Answer:
V = 3.1 L
Explanation:
Given data:
Molarity of solution = 0.37 M
Mass of LiF = 29.53 g
Volume of solution = ?
Solution:
Number of moles of LiF:
Number of moles = mass/molar mass
Number of moles = 29.53 g/ 25.94g/mol
Number of moles = 1.14 mol
Volume:
Molarity = number of moles of solute / Volume in L
0.37 M = 1.14 mol / V
V = 1.14 mol / 0.37 M
V = 3.1 L (M = mol/L)
Nuclear transmutation is the conversion of one chemical element or isotope into another. In other words, atoms of one element can be changed into atoms of another element by transmutation.
Answer:

Explanation:
Scientific notation is the way of writing numbers which are either large or small. The number is written in the scientific notation when the number is between 1 and 10 and then multiplied by the power of 10. Engineering notation is the same version of the scientific notation but the number can be between 1 and 1000 and in this exponent of the ten is divisible by three.
For example,
is to be written as
in engineering notation.
The given number:
0.00000009345 can be written as 
Answer upto 4 significant digits = 
Saturated solution is a solution in which no more solute can be dissolved in the solvent. When saturated solution cools, the solution began precipitate from the solution, because under lower temperature, usually, less amount solute can be dissolved in the solvent.
Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.