Explanation:
The electric field at a distance r from the charged particle is given by :

k is electrostatic constant
if r = 2 m, electric field is given by :

If r = 1 m, electric field is given by :

Dividing equation (1) and (2) we get :

So, at a point 1 m from the particle, the electric field is 4 times of the electric field at a point 2 m.
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>
Answer:
a
The orbital speed is 
b
The escape velocity of the rocket is 
Explanation:
Generally angular velocity is mathematically represented as
Where T is the period which is given as 1.6 days = 
Substituting the value


At the point when the rocket is on a circular orbit
The gravitational force = centripetal force and this can be mathematically represented as

Where G is the universal gravitational constant with a value 
M is the mass of the earth with a constant value of 
r is the distance between earth and circular orbit where the rocke is found
Making r the subject
![r = \sqrt[3]{\frac{GM}{w^2} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7Bw%5E2%7D%20%7D)
![= \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B6.67%2A10%5E%7B-11%7D%20%2A%205.98%2A10%5E%7B24%7D%7D%7B%284.45%2A10%5E%7B-5%7D%29%5E2%7D%20%7D)

The orbital speed is represented mathematically as

Substituting value

The escape velocity is mathematically represented as

Substituting values


The flow rate is 17gtts/min.
<h3>What is the drug infusion rate?</h3>
- The rate of infusion (or dosing rate) in pharmacokinetics refers to the ideal rate at which a drug should be supplied to achieve a steady state of a fixed dose that has been shown to be therapeutically effective. This rate is not only the rate at which a drug is administered.
- The infusion volume is divided into drops, which is known as a drip-rate. The Drip Rate formula is as follows: Volume (mL) times time (h) equals drip-rate. A patient must get 1,000 mL of intravenous fluids over the course of eight hours.
- Infusion rates of 3–4 mg/kg per minute are advised by manufacturers to reduce rate-related adverse effects. Usually, the infusion lasts for several hours. Although not advised, rates exceeding 5 mg/kg per hour may be tolerated by some patients.
- If no negative reactions occur, the rate may be increased in accordance with the table every 30 minutes up to a maximum rate of 3 ml/kg/hour (not to exceed 150 ml/hour).
To find the flow rate is 17gtts/min:

Therefore, The flow rate is 17gtts/min.
To learn more about infusion rate, refer to:
brainly.com/question/22761958
#SPJ9