In this case, the resistance for the diagram shown in the figure is located at point D. The symbol that best represents a resistance in an RLC diagram is one that is similar to that of point D.
Also, remember that by definition V = I * R.
The answer is D.
The velocity, 50 m/s, has two components - vertical and horizontal velocities.
The vertical component = 50 sin 30 = 25 m/s
The horizontal component = 50 cos 30 = 43.3 m/s
(a) Let t be the time taken for the vertical component to reach its peak from initial velocity = 25 m/s to its final velocity = 0.
Using the linear motion equation v = u - gt
0 = 25 - 10t
t = 2.5 s
Time taken to go up and down = 5 s
Time to hit the ground = 5 s
(b) Horizontal distance dealt x = 43.3 * 5 = 216.5 m
This is not the correct answer, but explains the problem thoroughly.
Watt is a unit for power that is also equal to J/s. We therefore need to convert the minutes to seconds first before answering. Every minute is comprised of 60 seconds. Therefore, 3 minutes are composed of 180 seconds. Multiplying the number of seconds to the given power will give us,
Work = Power x time
= (1500 J/s) x (180 s)
= 270,000 J
Therefore, the answer is letter D.
Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.