<u>Answer:</u> Aluminium is getting oxidized in the given chemical reaction.
<u>Explanation:</u>
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.

Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.

For the given chemical reaction:

The half cell reactions for the above reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u> 
As, aluminium is loosing 3 electrons to form aluminium cation. Thus, it is getting oxidized. Iron is gaining 2 electrons to form iron anion. Thus, it is getting reduced.
Hence, the oxidized species of the given reaction is aluminium.
It should remain constant because of the law of conservation of mass and because the flask is sealed no mass will escape
Answer:
Ion exchange.
Explanation:
One of the ways in which water can be treated is through the process known as ION EXCHANGE. Using this for treating water has to do basically with the transfer or say the exchange of ions.
Ion exchanges is done by exchanging ions which are considered as 'unfit' or contaminants by the ones that are "fit".
Ions from what is known as zeolite or resin is been exchanged with the ions in the water. Cations are exchanged with cations and anions are exchanged with anions.
NB: this method is a good method or removing contaminants that are ions but not contaminants that are not ions.
Answer:
- The abundance of 107Ag is 51.5%.
- The abundance of 109Ag is 48.5%.
Explanation:
The <em>average atomic mass</em> of silver can be expressed as:
107.87 = 106.90 * A1 + 108.90 * A2
Where A1 is the abundance of 107Ag and A2 of 109Ag.
Assuming those two isotopes are the only one stables, we can use the equation:
A1 + A2 = 1.0
So now we have a system of two equations with two unknowns, and what's left is algebra.
First we<u> use the second equation to express A1 in terms of A2</u>:
A1 = 1.0 - A2
We <u>replace A1 in the first equation</u>:
107.87 = 106.90 * A1 + 108.90 * A2
107.87 = 106.90 * (1.0-A2) + 108.90 * A2
107.87 = 106.90 - 106.90*A2 + 108.90*A2
107.87 = 106.90 + 2*A2
2*A2 = 0.97
A2 = 0.485
So the abundance of 109Ag is (0.485*100%) 48.5%.
We <u>use the value of A2 to calculate A1 in the second equation</u>:
A1 + A2 = 1.0
A1 + 0.485 = 1.0
A1 = 0.515
So the abundance of 107Ag is 51.5%.
Monocots<span> have only one seed leaf inside the seed coat. It is often only a thin leaf, because the endosperm to feed the new plant is not inside the seed leaf. </span>Dicots <span>have two seed leaves inside the seed coat. They are usually rounded and fat, because they contain the endosperm to feed the embryo plant.
</span><span>
</span>