Answer:
Boiling point of water is 100 deg C. It takes about 540 cal to change 1 g of water at the boiling point to 1 g of steam at 100 deg C.
You weigh slightly more at the beach than on top of a mountain, because at the beach, you're closer to the center of the Earth.
Answer:
12m/s
Explanation:
v^2=u^2+2as
v=?
u=0 (the dish was stationary before it fell)
a=9.81 m/s^2 (acceleration due to gravity/freefall)
s=1.5m (the drop height)
So: v^2=0+2.9.81.1.5 = 144.35415
and therefore v=sqrt 144.35415
12x12=144 so I'd say v=12m/s
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume