1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
3 years ago
12

A 1.70 m cylindrical rod of diameter 0.550 cm is connected to a power supply that maintains a constant potential difference of 1

4.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0 degrees C) the ammeter reads 18.5 A, while at 92.0 degrees C it reads 17.2 A. You can ignore any thermal expansion of the rod.
Find the resistivity and for the material of the rod at 20 degrees C.

Find the temperature coefficient of resistivity at 20 degrees C for the material of the rod.
Physics
1 answer:
Nikitich [7]3 years ago
4 0
Resistance = ρ * (L/A) and Rf = Ri * ([1 + α * (Tf – Ti)] 
ρ = Resistivity L = length in meters A = cross sectional area in m^2 α = temperature coefficient of resistivity 
L = 1.50 m Area = π * r^2 r = d/2 = 0.25 cm = 2.5 * 10^-3 m Area = π * (2.5 * 10^-3)^2 

The cylindrical rod is similar to a resistor. Since the current is decreasing, the resistance must be increasing. This means the resistance is increasing as the temperature increases. Resistance = Voltage ÷ Current At 20˚, R = 15 ÷ 18.5 At 92˚, R = 15 ÷ 17.2 

Now you know the resistance at the two temperatures. Let’s determine the resistivity at the two temperatures. Resistance = ρ * (L/A) ρ = Resistance * (A/L) 
At 20˚, ρ = (15 ÷ 18.5) * [π * (2.5 * 10^-3)^2] ÷ 1.5 = At 92˚, ρ = (15 ÷ 17.2) * [π * (2.5 * 10^-3)^2] ÷ 1.5 = 
Now you know the resistivity at the two temperatures. Let’s determine the temperature coefficient of resistivity for the material of the rod. 
Rf = Ri * ([1 + α * (Tf – Ti)] Rf = 15 ÷ 17.2, Ri = 15 ÷ 18.5, Tf = 92˚, Ti = 20˚ 
15 ÷ 17.2 = 15 ÷ 18.5 * [1 + α * (92 – 20)] Multiply both sides by (18.5 ÷ 15) (18.5 ÷ 15) * (15 ÷ 17.2) = 1 + α * 72 Subtract 1 from both sides (18.5 ÷ 15) * (15 ÷ 17.2) – 1 = α * 72 Divide both sides by 72 α = 1.05 * 10^-3 
You might be interested in
4 This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive
zubka84 [21]

Answer:at 21.6 min they were separated by 12 km

Explanation:

We can consider the next diagram

B2------15km/h------->Dock

|

|

B1 at 20km/h

|

|

V

So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.

Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.

3 0
3 years ago
A child has a toy car on a horizontal platform. The car starts from rest and reaches a maximum speed in 4 s. If the mass of the
dmitriy555 [2]

Answer:

a=4m/s²

Explanation:

F=ma

0.4=0.1a

7 0
3 years ago
Read 2 more answers
60 POINTS model how sound produced by a singer is recorded by a microphone and reproduced by a speaker (sound model) WITH RUBIC
Nikolay [14]

Answer:

Explanation: i don't know bro

6 0
3 years ago
Question is down below
rosijanka [135]

The vertical components of velocity is 10.35 m/s and the horizontal component of velocity is 38.6 m/s

<h3>What are the components of velocity?</h3>

We know that velocity is a vector quantity, a vector often can be resolved into its components. The vertical components is V sinθ while the horizontal component is vcosθ.

Hence;

Vertical component = 40 m/s sin 15 degrees = 10.35 m/s

Horizontal component = 40 cos 15 degrees = 38.6 m/s

Learn more about components of velocity:brainly.com/question/14478315

#SPJ1

7 0
2 years ago
A student throws a 120 g snowball at 7.5 m/s at the side of the schoolhouse, where it hits and sticks. What is the magnitude of
mr Goodwill [35]

Answer:

The magnitude of the average force on the wall during the collision is 6 N.

Explanation:

Given;

mass of snowball, m = 120 g = 0.12 kg

velocity of the snowball, v = 7.5 m/s

duration of the collision between the snowball and the wall, t = 0.15 s

Magnitude of the average force can be calculated by applying Newton's second law of motion;

F = ma

where;

a is acceleration = v / t

a = 7.5 / 0.15

a = 50 m/s²

F = ma

F = 0.12 x 50

F = 6 N

Therefore, the magnitude of the average force on the wall during the collision is 6 N.

4 0
3 years ago
Other questions:
  • Two identical cars collide head on. Each car is traveling at 100 km/h. The impact force on each car is the same as hitting a sol
    13·1 answer
  • A runner circles the track exactly 2 times for distance of 800m. it takes 4.0min. what is her average speed in m/s? what is her
    5·1 answer
  • Which is an example of a physical change? wood rots. gasoline ignites. water evaporates. a nail rusts. description?
    9·2 answers
  • Virginia���s blue ridge mountains were pushed up when the north american and african continents collided in a process known as
    15·2 answers
  • The distance from the Earth to the Sun is 92 868 000 miles.
    14·1 answer
  • The mass of all bicycles and riders indicated in the graph are equal. What indicates the order of their average velocity from gr
    12·2 answers
  • On a touchdown attempt, 95.00 kg running back runs toward the end zone at 3.750 m/s. A 113.0 kg line-backer moving at 5.380 m/s
    6·1 answer
  • You can take your heart rate for 6 seconds and multiply by 10 to get the 60 second count quickly during
    13·1 answer
  • A child kicks a ball horizontally with a speed of 2.8 m/s from the end of a deck that is 8.5 m high.
    14·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!