Answer:
<h2>844.4 mmHg</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

From the question we have

We have the final answer as
<h3>844.4 mmHg</h3>
Hope this helps you
We know that:
number of moles (n) = mass / molar mass
Now, from the general law of gases:
PV = nRT
where:
P is the pressure = 500 torr = 0.65 atm
V is the volume
n is the number of moles
R is the gas constant = 0.082
T is the temperature = 300 k
We will just rearrange this equation as follows:
P = nRT / V
Then we will substitute n with its equivalent equation mentioned at the beginning:
P = (mass x R x T) / (volume x molar mass) ......> equation I
Now, we know that:
density = mass / volume
We will substitute (mass/volume) in equation I with density as follows:
P = (density x R x T) / molar mass
Rearrange this equation to get the mass as follows:
molar mass = <span>dRT/P = (0.216 x 0.082 x 300) / 0.65 = 8.4738 grams
</span>
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of nitrogen = 14 grams
Therefore:
molar mass of hydrogen = 2 x 1 = 2 grams
molar mass of nitrogen = 2 x 14 = 28 grams
We can assume that the number of moles of of each element is y.
We can thus build up the following equation:
2y + 28y = 8.4738
30y = 8.4738
y = 0.28246
Therefore:
mole fraction of hydrogen = 2 x 0.28246 = 0.56492
mole fraction of nitrogen = 28 x 0.28246 = 7.90888
Answer:Then a few days later the activity of the sample will be due to have more of Nuclides Y than X
Explanation:
This is because half life of nuclide X is about a day which is less than Y having half life of about a week, After a few days, we would observe that X would have disintegrated more while Y will still be predominant since it disintegrate slower than X. The time it takes for X to disintegrate will always be faster than Y.