Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:


Answer: Option (3) is the correct answer.
Explanation:
Atomic number of lithium is 3 and its electronic distribution is 2, 1. So, to attain stability it will loose an electron and hence, it forms a single bond.
Atomic number of chlorine is 17 and it has 7 valence electrons. Hence, in order to attain stability it will gain one electron and therefore, it forms a single bond only.
Atomic number of nitrogen is 7 and its electronic distribution is 2, 5. Therefore, to attain stability it needs to gain 3 more electrons. Hence, a nitrogen atom is able to form a triple bond and also it is able to form a double bond.
Hydrogen has atomic number 1 and it attains stability by gaining one electron. Therefore, a hydrogen atoms always forms a single bond.
Atomic number of fluorine is 9 and its electronic distribution is 2, 7. To complete its octet it needs to gain one electron. Hence, a fluorine atom always forms a single bond.
Thus, we can conclude that out of the given options nitrogen is most likely to form multiple (double or triple) bonds.
The answer is the bohr model was molded after the solar system
The answer would be Linear. in Carbon Dioxide, the two double bonds count as two pairs of electrons around the carbon atom, predicting linear geometry.
source: http://chemistry.elmhurst.edu/vchembook/207epgeom.html