The scientist is likely to be studying kinematics.
Kinematics is the branch of science, specifically physics, which is concerned with the motion of objects without reference to the forces that induce this motion. An example of kinematics is studying the change in velocity of an object over time or the distance covered by an object in a specified amount of time.
The answer on Edge would be (A.)= Larger and Cooler ! I'm doing the same thing as y'all. Good luck everyone.
Answer:
≈ 0.144 m
Explanation:
Density is mass divided by volume:
D = M / V
Solving for volume:
V = M / D
Given M = 1.2 kg and D = 400 kg/m³:
V = 1.2 kg / (400 kg/m³)
V = 0.003 m³
Volume of a cube is the side length cubed:
V = s³
Therefore:
s³ = 0.003 m³
s ≈ 0.144 m
Round as needed.
Answer:
The z-component of the force is
Explanation:
From the question we are told that
The charge on the particle is
The magnitude of the magnetic field is 
The velocity of the particle toward the x-direction is 
The velocity of the particle toward the y-direction is

The velocity of the particle toward the z-direction is

Generally the force on this particle is mathematically represented as

So we have

substituting values
So the z-component of the force is
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).
Answer:
(a) V1 = 8990.00 V
V2 = 8960.13 V
Explanation:
Parameters given:
q =3 mC
k = 8.99 * 10⁹ Nm²/C²
x1 = 3 m
x2 = 3.01 m
Electric potential is given as:
V = kq/r
Where
k = Coulombs constant
q = charge
r = distance
Potential at x1 is:
V1 = (8.99 * 10⁹ * 0.000003)/(3)
V1 = 8990.00V
Potential at x2 is:
V2 = (8.99 * 10⁹ * 0.003)/(3.01)
V2 = 8960.13 V