Answer:
None, if air resistance is ignored.
Explanation:
At any instant, the projectile has vertical and horizontal components of velocity.
Vertical acceleration due to gravity affects the vertical velocity by accelerating the object toward the center of the earth, and by decreasing the upward vertical velocity..
The horizontal component of velocity makes the object travel horizontally as long as the projectile is airborne.
Thsi discussion assumes that air resistance is ignored.
Answer:
0.799 m/s if air resistance is negligible.
Explanation:
For how long is the ball in the air?
Acceleration is constant. The change in the ball's height
depends on the square of the time:
,
where
is the change in the ball's height.
is the acceleration due to gravity.
is the time for which the ball is in the air.
is the initial vertical velocity of the ball.
- The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground.
. - Gravity pulls objects toward the earth, so
is also negative.
near the surface of the earth. - Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result,
.
Solve for
.
;
;
;
.
What's the initial horizontal velocity of the ball?
- Horizontal displacement of the ball:
; - Time taken:

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.
.
Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.
Answer:

Explanation:
d = Diameter of spot = 30 μm
r = Radius of spot = 
P = Power of the laser = 
A = Area = 
Intensity is given by

The light intensity within this spot is 
Answer: A is Compression and B is Rarefaction.
Explanation:
i think it's right. hope it helps.
Answer:
The minimum coefficient of friction is 0.27.
Explanation:
To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.
Centripetal force is written as

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

with ω denoting the angular velocity, which we are given. With that, the above becomes:

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

and so 45 rev/min = 4.71 rad/s.

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.