1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
11

What is TRUE about a capitalist society?

Physics
2 answers:
Makovka662 [10]3 years ago
7 0

The idea behind capitalism is that the free market of products and ideas is owned and driven by private citizens. A capitalist society is a social order in which private property rights and the free market serve as the basis of trade, distribution of goods, and development.

Lerok [7]3 years ago
7 0

Answer:

In ideal terms: In a capitalist economic system, the owner of production is the individual, and the benefactors of production are first the individual and second the society. In a socialist or communist economic system, the owner of production is the state or the society, and the benefactor is the society.

You might be interested in
What effect does the vertical acceleration have on the horizontal velocity of the projectile?
KengaRu [80]
Answer:
None, if air resistance is ignored.

Explanation:
At any instant, the projectile has vertical and horizontal components of velocity.
Vertical acceleration due to gravity affects the vertical velocity by accelerating the object toward the center of the earth, and by decreasing the upward vertical velocity.. 
The horizontal component of velocity makes the object travel horizontally as long as the projectile is airborne.
Thsi discussion assumes that air resistance is ignored.
3 0
3 years ago
A steel ball rolls with a constant velocity on a tabletop 0.950 m high it rolls off and hit the ground 0.352 m from the edge of
sp2606 [1]

Answer:

0.799 m/s if air resistance is negligible.

Explanation:

For how long is the ball in the air?

Acceleration is constant. The change in the ball's height \Delta h depends on the square of the time:

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t,

where

  • \Delta h is the change in the ball's height.
  • g is the acceleration due to gravity.
  • t is the time for which the ball is in the air.
  • v_0 is the initial vertical velocity of the ball.
  • The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground. \Delta h = -0.950\;\text{m}.
  • Gravity pulls objects toward the earth, so g is also negative. g \approx -9.81\;\text{m}\cdot\text{s}^{-2} near the surface of the earth.
  • Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result, v_0 = 0.

Solve for t.

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t;

\displaystyle -0.950 = \frac{1}{2} \times (-9.81) \cdot t^{2};

\displaystyle t^{2} =\frac{-0.950}{1/2 \times (-9.81)};

t \approx 0.440315\;\text{s}.

What's the initial horizontal velocity of the ball?

  • Horizontal displacement of the ball: \Delta x = 0.352\;\text{m};
  • Time taken: \Delta t = 0.440315\;\text{s}

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.

\begin{aligned}\text{Rolling Velocity}&=\text{Horizontal Velocity} \\&= \text{Average Horizontal Velocity}\\ &=\frac{\Delta x}{\Delta t}=\frac{0.352\;\text{m}}{0.440315\;\text{s}}=0.0799\;\text{m}\cdot\text{s}^{-1}\end{aligned}.

Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.

3 0
3 years ago
The world's most powerful laser is the LFEX laser in Japan. It can produce a 2 petawatt(2×10^15W) laser pulse that last for 1 ps
kogti [31]

Answer:

2.82942\times 10^{24}\ W\m^2

Explanation:

d = Diameter of spot = 30 μm

r = Radius of spot = \frac{d}{2}=\frac{30}{2}=15\ mu m

P = Power of the laser = 2\times 10^{15}\ W

A = Area = \pi r^2

Intensity is given by

I=\frac{P}{A}\\\Rightarrow I=\frac{2\times 10^{15}}{\pi\times (15\times 10^{-6})^2}\\\Rightarrow I=2.82942\times 10^{24}\ W/m^2

The light intensity within this spot is 2.82942\times 10^{24}\ W/m^2

8 0
3 years ago
Q1: What type of mechanical wave is produced by the action of this coiled spring?
erik [133]

Answer: A is Compression and B is Rarefaction.

Explanation:

i think it's right. hope it helps.

4 0
2 years ago
Read 2 more answers
A bug is 12 cm from the center of a turntable that is rotating with a frequency of 45 rev/min . What minimum coefficient frictio
Agata [3.3K]

Answer:

The minimum coefficient of friction is 0.27.

Explanation:

To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.

Centripetal force is written as

F_c = m\frac{v^2}{r}

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

v = r\omega

with ω denoting the angular velocity, which we are given. With that, the above becomes:

F_c = m\frac{v^2}{r}=m\omega^2 r

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

F_r=\mu mg \geq m\omega^2 r = F_c\implies\\\mu \geq \frac{\omega^2 r}{g}

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

\frac{1 rev}{1 min}\cdot\frac{\frac{2\pi rad}{rev}}{\frac{60s}{1 min}}=\frac{2\pi}{60}\frac{rad}{s}

and so 45 rev/min = 4.71 rad/s.

\mu \geq \frac{\omega^2 r}{g}=\frac{4.71^2\frac{1}{s^2}\cdot 0.12m}{9.8\frac{m}{s^2}}=0.27

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.



3 0
3 years ago
Other questions:
  • A piece of magnetic material that retains its magnetic properties after it is removed from a magnetic field.
    8·2 answers
  • Is wind electrically charged
    13·1 answer
  • A person standing at the edge of a seaside cliff kicks a stone, horizontally over the edge with a velocity of 18 m/s. The cliff
    7·1 answer
  • The climate of a location is affected by the presence of
    6·2 answers
  • What do I do if someone is choking me with both of their hands, inside of the classroom and the teacher isn't around? How do I g
    8·1 answer
  • A wire 3.22 m long and 7.32 mm in diameter has a resistance of 11.9 mΩ. A potential difference of 33.7 V is applied between the
    11·1 answer
  • You wish to cook some pasta and so take some water and heat it on a stove. If you use 2000 grams of water with an initial temper
    15·1 answer
  • Heeeelllllllpppp I need this right now
    13·2 answers
  • A force of 10N is making an angle of 300 with the horizontal. Its horizontal components will be
    15·1 answer
  • Is it possible to round a corner with a constant speed and a constant velocity
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!