Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
The correct selections are C, C, B, D, A, B, and A .
Answer:
As the earth is an oblate spheroid, its radius near the equator is more than its radius near poles. Since for a source mass, the acceleration due to gravity is inversely proportional to the square of the radius of the earth, it varies with latitude due to the shape of the earth.
Formula: g = GM/r2
Dimensional Formula: M0L1T-2
Values of g in SI: 9.806 ms-2
Explanation:
Please Mark me brainliest
Answer:
because he give heat and energy
This problems a perfect application for this acceleration formula:
Distance = (1/2) (acceleration) (time)² .
During the speeding-up half: 1,600 meters = (1/2) (1.3 m/s²) T²
During the slowing-down half: 1,600 meters = (1/2) (1.3 m/s²) T²
Pick either half, and divide each side by 0.65 m/s²:
T² = (1600 m) / (0.65 m/s²)
T = square root of (1600 / 0.65) seconds
Time for the total trip between the stations is double that time.
T = 2 √(1600/0.65) = <em>99.2 seconds</em> (rounded)