Answer:
Dilations which reduce or enlarge an object. Translations which move the object from one part on the graph to another. I have also learned about how to construct a perpendicular bisector.
Step-by-step explanation:
Answer:
Zeroes : 1, 4 and -5.
Potential roots: .
Step-by-step explanation:
The given equation is
It can be written as
Splitting the middle terms, we get
Splitting the middle terms, we get
Using zero product property, we get
Therefore, the zeroes of the equation are 1, 4 and -5.
According to rational root theorem, the potential root of the polynomial are
Constant = 20
Factors of constant ±1, ±2, ±4, ±5, ±10, ±20.
Leading coefficient= 1
Factors of leading coefficient ±1.
Therefore, the potential root of the polynomial are .
Answer:
(2.5, -.25)
Step-by-step explanation:
I'm not positive that I know exactly what they want on this one....but since you specifically asked me to look at your other question, I tried.
See pic.
Answer:
Claim 2
Step-by-step explanation:
The Inscribed Angle Theorem* tells you ...
... ∠RPQ = 1/2·∠ROQ
The multiplication property of equality tells you that multiplying both sides of this equation by 2 does not change the equality relationship.
... 2·∠RPQ = ∠ROQ
The symmetric property of equality says you can rearrange this to ...
... ∠ROQ = 2·∠RPQ . . . . the measure of ∠ROQ is twice the measure of ∠RPQ
_____
* You can prove the Inscribed Angle Theorem by drawing diameter POX and considering the relationship of angles XOQ and OPQ. The same consideration should be applied to angles XOR and OPR. In each case, you find the former is twice the latter, so the sum of angles XOR and XOQ will be twice the sum of angles OPR and OPQ. That is, angle ROQ is twice angle RPQ.
You can get to the required relationship by considering the sum of angles in a triangle and the sum of linear angles. As a shortcut, you can use the fact that an external angle is the sum of opposite internal angles of a triangle. Of course, triangles OPQ and OPR are both isosceles.