It will take exactly 4 years for these trees to be the same height
Step-by-step explanation:
A gardener is planting two types of trees:
- Type A is 3 feet tall and grows at a rate of 7 inches per year
- Type B is 5 feet tall and grows at a rate of 1 inches per year
We need to find in how many years it will take for these trees to be the
same height
Assume that it will take x years for these trees to be the same height
The height of a tree = initial height + rate of grow × number of years
Type A:
∵ The initial height = 3 feet
∵ 1 foot = 12 inches
∴ The initial height = 3 × 12 = 36 inches
∵ The rate of grows = 7 inches per year
∵ The number of year = x
∴
= 36 + (7) x
∴
= 36 + 7 x
Type B:
∵ The initial height = 5 feet
∴ The initial height = 5 × 12 = 60 inches
∵ The rate of grows = 1 inches per year
∵ The number of year = x
∴
= 60 + (1) x
∴
= 60 + x
Equate
and 
∴ 36 + 7 x = 60 + x
- Subtract x from both sides
∴ 36 + 6 x = 60
- Subtract 36 from both sides
∴ 6 x = 24
- Divide both sides by 6
∴ x = 4
∴ The two trees will be in the same height in 4 years
It will take exactly 4 years for these trees to be the same height
Learn more:
You can learn more about the rate in brainly.com/question/10712420
#LearnwithBrainly
So I'm assuming that you're taking Calculus.
The first thing you want to do is take the integral of f(x)...
Use the power rule to get:
4X^2-13X+3.
Now solve for X when f(x)=0. This is because when the slope is 0, it is either a minimum or a maximum(I'm assuming you know this)
Now you get X=0.25 and X=3. Since we are working in the interval of (1,4), we can ignore 0.25
Thus our potential X values for max and min are X=1,X=4,X=3(You don't want to forget the ends of the bounds!)
Plugging these value in for f(x), we get
f(1)=2.833
f(3)=-8.5
f(4)=1.667
Thus X=1 is the max and X=3 is the min.
So max:(1,2.833)
min:(3,-8.5)
Hope this helps!
Answer:
55 minutes
Step-by-step explanation:
N = 9
explanation: If you tilt triangle FGH to where it matches triangle PQR, 9 is matched with N.
more help:
Q = G
10.5 = 7
P = F
H = R
4 = 6
9 = N