Carbon monoxide would be the anwser
There are two molecular orbitals in the CH2O or formaldehyde. These are designated by the two types of bonding involved. The first is the sigma bonding. It is the head-on overlap of electrons of the C and H atoms. The second molecular orbital is formed from the pi orbital bonding. This is a sideway overlap of electrons between C-O bonding.
<u>Answer:</u> The half life of the given radioactive isotope is 43.86 minutes
<u>Explanation:</u>
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken for decay process = 233 minutes
= initial amount of the reactant = 0.500 M
[A] = amount left after decay process = 0.0125 M
Putting values in above equation, we get:

The equation used to calculate half life for first order kinetics:

where,
= half-life of the reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the given radioactive isotope is 43.86 minutes
Answer:

Explanation:
N = Final mass of atom = 125 g
= Initial mass of atom = 16000 g
t = Time taken = 163.24 days
= Half life
We have the relation

The half life of the atom is
.
Analytical chemistry -- A task that would fall into this area of chemistry is measuring the level of lead in drinking water.