Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
s = 1 orbital
p = 3 orbitals
d = 5 orbitals
f = 7 orbitals
For n = 4
l = 0 to (n-1) = 0 to 3 = (4s , 4p , 4d , 4f)
Number of subshells = 4
Number of orbitals = 1 + 3 + 5 + 7 = 16
The maximum number of electrons the n = 4 shell can contain:
Each orbital can holds upto two electrons, then 16 orbitals will have :

32 is the maximum number of electrons the n = 4 shell can contain
Answer:
Scandium
Explanation:
Mendeleev played an important role in the development of the modern periodic table. His periodic table was filled with gaps. He said that these gaps were elements that were yet to be discovered. He rightly predicted many elements which have now been discovered and fitted in their proper places in the periodic table.
He used the prefix ''eka'' to refer to elements whose properties were alike but were yet to be discovered at that time.
The compound named ekaboron which he predicted to have an atomic weight between 65 (zinc) and 75 (arsenic) with a valence similar to aluminum was later discovered in 1879 and properly named scandium.
Answer:
The major product is 2-methyl-2-pentene [ CH₃-CH₂-CH=C(CH₃)₂ ] and a minor product 2-methyl-1-pentene [ CH₃-CH₂-CH₂-C(CH₃)=CH₂ ].
Explanation:
Dehydration reaction is a reaction in which a molecule loses a water molecule in the presence of a dehydrating agent like sulfuric acid (H₂SO₄).
<u>Dehydration reaction of 2-methyl-2-pentanol</u> gives a major product 2-methyl-2-pentene and a minor product 2-methyl-1-pentene.
CH₃-CH₂-CH₂-C(CH₃)₂-OH (2-methyl-2-pentanol)→ CH₃-CH₂-CH=C(CH₃)₂ (2-methyl-2-pentene, major) + CH₃-CH₂-CH₂-C(CH₃)=CH₂ (2-methyl-1-pentene, minor)
<u>Since more substituted alkene is more stable than the less substituted alkene. So, the trisubstituted alkene, 2-methyl-2-pentene is more stable than the disubstituted alkene, 2-methyl-1-pentene.</u>
<u>Therefore, the trisubstituted alkene, 2-methyl-2-pentene is the major product and the disubstituted alkene, 2-methyl-1-pentene is the minor product.</u>