The law of conservation of energy states that in a closed or isolated system, the amount of energy remains constant because energy can neither be created or destroyed. It can only be transferred from one form into another. This applies to all forms of energy.
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Answer:
It would not be possible the cohesion among water molecules by the polar covalent bonding.
Well, to understand this in a better way, let's begin by explaining that water is special due to its properties, which makes this fluid useful for many purposes and for the existence of life.
In this sense, one of the main properties of water is cohesion (molecular cohesion), which is the attraction of molecules to others of the same type. So, water molecule (
) has 2 hydrogen atoms attached to 1 oxygen atom and can stick to itself through hydrogen bonds.
How is this possible?
By the polar covalent bonding, a process in which electrons are shared unequally between atoms, due to the unequal distribution of electrons between atoms of different elements. In other words: slightly positive and slightly negative charges appear in different parts of the molecule.
Now, it can be said that a water molecule has a negative side (oxygen) and a positive side (hydrogen). This is how the oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Thanks to this polarity, water molecules can stick together.
Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.