1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
5

dominic earns 285$ per week, plus an 8 percent commission rate on all of his sales. If dominic sells $4,213 worth of merchandise

in one week, how much will his total earning for the week be?
Mathematics
2 answers:
zimovet [89]3 years ago
8 0
Multiply the commission rate 8% by total merch sold

Change % to a decimal when you multiply so...

.08*4213 = <span>337.04
^ commission rate

To find the total earnings for the week, add 285 to the commission rate

285 + 337.04 = </span><span>622.04</span>
Fittoniya [83]3 years ago
3 0


.08*4213 = 337.04
^ commission rate

To find the total earnings for the week, add 285 to the commission rate

285 + 337.04 = 622.04
You might be interested in
State the domain and range for the graph of the following function:
iVinArrow [24]

Answer

so whats the question?

Step-by-step explanation:

8 0
3 years ago
Need help on math question thanks <br> A) 0.303 <br> B) 0.435 <br> C) 0.406<br> D) 0.154
Airida [17]

Answer:

A) 0.303

The probability that a randomly selected student from the class has brown eyes , given they are male

P(\frac{B}{M} ) = 0.3030

Step-by-step explanation:

<u>Explanation</u>:-

Given data

                      Brown           Blue           Hazel           Green

Females           13                  4                  6                   9          

Males                10                  2                 9                   12

<em>Let 'B' be the event of brown eyes </em>

<em>Total number of males n(M) = 33</em>

Let B/M be the event of randomly selected student from the class has brown eyes given they are male

<em>The probability that a randomly selected student from the class has brown eyes , given they are male</em>

<em></em>P(\frac{B}{M} ) = \frac{n(B)}{n(M)}<em></em>

<em>From table the brown eyes from males = 10</em>

P(\frac{B}{M} ) = \frac{10}{33}

P(\frac{B}{M} ) = 0.3030

<u>Final answer</u>:-

The probability that a randomly selected student from the class has brown eyes , given they are male

P(\frac{B}{M} ) = 0.3030

8 0
3 years ago
Roberto and Maria Santanos spend approximately $11.50 per week to wash and dry their family's clothes at a local coin laundry. A
Elena L [17]

Answer:

68 weeks

Step-by-step explanation:

1 week costs $11.50.

so, how many such weekly each cycles fit into the price of new machines ?

if they wait to long (to many weeks) they spend in total more money than buying a new machine.

but if they stay still below that max. number of weeks, they have at least the illusion that they are cheaper of with the weekly laundromat investment (but they forget, sooner or later they will need the new machines).

so the break even point is simply

782 / 11.5 = 68 weeks.

after 68 weeks it has cost them exactly the same amount of money, as if they had bought new machines right away at the beginning.

3 0
3 years ago
Answer key for middle school math with pizzazz! book d d-47
Deffense [45]

Answer:

yea its in the book

Step-by-step explanation:

3 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Other questions:
  • Archie builds a pool in his backyard. The pool measures 16 yards long, 6 yards wide and 2 yards deep. How many gallons of water
    6·1 answer
  • What is the value of x?<br><br> Enter your answer in the box
    11·1 answer
  • Find x.
    15·1 answer
  • Find the piece wise function for the graph
    11·1 answer
  • PLS HELP ASAP!
    14·1 answer
  • Solve the equation.<br> 4x-18=52
    7·2 answers
  • - 1/7 divided by 1/10
    7·1 answer
  • For lines a , c , and d , line c is parallel to line d and m ∠ 1 = 55 ° . Part A: For the given diagram, use the measure of ∠ 1
    8·1 answer
  • ANSWER PLEASE NEED HELP
    6·1 answer
  • Help me pls Ahhhh <br> Help me brainles
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!