Answer:
the answer is A
Explanation:
Hopefully u get the answer right
Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.