To solve this problem we will apply the concept related to the magnetic dipole moment that is defined as the product between the current and the object area. In our case we have the radius so we will get the area, which would be



Once the area is obtained, it is possible to calculate the magnetic dipole moment considering the previously given definition:



Therefore the magnetic dipole moment is 
Answer:
= 591.45 T/s
Explanation:
i = induced current in the loop = 0.367 A
R = Resistance of the loop = 117 Ω
E = Induced voltage
Induced voltage is given as
E = i R
E = (0.367) (117)
E = 42.939 volts
= rate of change of magnetic field
A = area of loop = 7.26 x 10⁻² m²
Induced emf is given as


= 591.45 T/s
Component ' W ' is the standard schematic symbol for a switch.
The short line between the two circles can be shown straight,
like it is now, when the switch is 'closed' and current can flow.
Or, it can also be drawn slightly tilted, so it's not touching one
of the circles. In that case, the switch is 'open', no current can
flow through it, and the whole circuit is shut down.
Answer:
By applying a force of one Newton, one can hold a body of mass of 102 gram.
Explanation:
- Force is the pull or push of an object. It can be mathematically measured as, F= m* g.
where, F= force in newton
m= mass in kg
g= acceleration due to gravity (
)
F= m* 9.8
or, m=
= 0.102 kg
or, m= 102 gram.
- Hence, 102 gram mass can be hold by one Newton force.
<span>Newton's law of universal gravitation is an INVERSE SQUARE LAW, which rules out C and D.It is proportional to the masses involved, which rules out B.A could be seen as one form of the lawF=G m1 m1/r^2Though I recognise it more as F=G m1 m2/r^2.G is the universal gravity constant and is distinct from g which is the acceleration of gravity LOCAL to a planet or moon. So, g is LOCAL, G is universal.Newton was a smart bloke, as are all these scientists whose names frequently appear.
</span>