The Law of the Conservation of Energy is stating that the total mechanical energy is always conserved or in simpler terms, not used or saved.
By definition, the gain in PE (potential energy) is
ΔPE = m*g*h
Given:
mg = 40 N (Note that m*g = weight)
h = 5 m
ΔPE = (40 N)*(5 m) =200 J
Answer: 200 J
Answer: 
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling


So, the velocity of putty just before hitting is 
Same magnitude (1000N) and opposite direction
you may also answer -1000 N
1. Find the force of friction between the sports car and the station wagon stuck together and the road. The total mass m = 1928kg + 1041kg = 2969kg. The only force in the x-direction is friction: F = μ*N = μ * m * g
2. Find the acceleration due to friction:
F = m*a = μ * m * g => a = μ * g = 0.6 * 9.81
3. Find the time it took the two cars stuck together to slide 12m:
x = 0.5*a*t²
t = sqrt(2*x / a) = sqrt(2 * x / (μ * g) )
4. Find the initial velocity of the two cars:
v = a*t = μ * g * sqrt(2 * x / (μ * g) ) = sqrt( 2 * x * μ * g)
5. Use the initial velocity of the two cars combined to find the velocity of the sports car. Momentum must be conserved:
m₁ mass of sports car
v₁ velocity of sports car before the crash
m₂ mass of station wagon
v₂ velocity of station wagon before the crash = 0
v velocity after the crash
m₁*v₁ + m₂*v₂ = (m₁+m₂) * v = m₁*v₁
v₁ = (m₁+m₂) * v / m₁ = (m₁+m₂) * sqrt( 2 * x * μ * g) / m₁
v₁ = 33.9 m/s