1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
6

How far will a free falling object fall in 8.7 secs if it started from rest? Remember acceleration is negative for free fall. Do

not use a negative number for "how far" the object fell.
Physics
1 answer:
sleet_krkn [62]3 years ago
4 0

Answer:

h~=371.26m

Explanation:

when an object falls we use the equations of accelerated motion. There is only one that gives distance.

x = ut +  \frac{1}{2} a {t}^{2}

Since we have no initial velocity (started from rest) we can get rid of the (ut) term

where a we substitute g (gravitational acceleration, constant for given heights and almost 9.81m/s^2).

h =  \frac{1}{2} g {t}^{2}  =  \frac{1}{2}  \times 9.81 \times  {8.7}^{2}  = 371.26m

You might be interested in
A soccer player takes a corner kick, lofting a stationary ball 33.0° above the horizon at 15.0 m/s. If the soccer ball has a mas
Alexxandr [17]

Explanation:

It is given that,

Mass of the soccer ball, m = 0.425 kg

Speed of the ball, u = 15 m/s

Angle with horizontal, \theta=33^{\circ}

Time for which the player's foot is in contact with it, \Delta t = 5.1\times 10^{-2}\ s

Part A,

The x component of the soccer ball's change in momentum is given by :

\Delta p_x=mv\ cos\theta

\Delta p_x=0.425\times 15\ cos(33)

p_x=5.34\ kg-m/s

The y component of the soccer ball's change in momentum is given by :

\Delta p_y=mv\ sin\theta

\Delta p_y=0.425\times 15\ sin(33)

p_y=3.47\ kg-m/s

Hence, this is the required solution.

3 0
3 years ago
A book is at rest on a table. Identify the correct free-body diagram for this situation.
Law Incorporation [45]
Show a picture .. of what your doing
5 0
3 years ago
Read 2 more answers
The graph shows the displacement of a mouse
hram777 [196]

The farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.

From the graph,

The positions reached after,

5 s = 4 m

10 s = 2 m

20 s = 2 m

35 s = 3 m

40 s = 0 m

So the farthest position here is 4 m into the tunnel.

The rate of change of positions is displacement. So displacement will be change in initial and final positions divided by change in time.

s = Δx / Δt

Therefore, the farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.

To knw more about displacement

brainly.com/question/28609499

#SPJ1

5 0
1 year ago
What is the density to the object g/cm3
alexdok [17]
Should be 1.4, I hope this helps you out
6 0
2 years ago
A circuit consists of a battery connected to three resistors (65 ω, 25ω, and 170ω) in parallel. the total current through the re
White raven [17]
A. To find the total emf of the battery, just remember that in a parallel circuit, the voltage is the same throughout the circuit. So you can get the total voltage of the circuit by using Ohm's Law. 

I= \frac{V}{R}

Where:
I = current (A)
V = Voltage (V) (emf)
R = Resitance (Ω)

Now you can derive the formula of Voltage by transposing the Resistance to the other side of the equation to isolate Voltage. The formula you will now use will be:
V = IR

However, you cannot solve this yet because the resistance you need is the total resistance in the circuit. To do this, you need to get the total resistance in this parallel circuit and the formula would be:

\frac{1}{R_{T}} =  \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

You have three resistors with the following resistance:
65Ω, 25Ω and 170Ω
\frac{1}{R_{T}} = \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

\frac{1}{R_{T}} = \frac{1}{R_{65}}+ \frac{1}{R_{25}}+ \frac{1}{R_{170}}


\frac{1}{R_{T}} =0.0153+0.04+0.006+0.0059
\frac{1}{R_{T}} =0.0613

Get the reciprocal of both sides and divide:

R_{T} =  \frac{1}{0.0613} =16.32

The total resistance then is 16.32Ω

Now that you have the total resistance, you can solve for the total voltage:
V = IR
V = (1.8)(16.32)
V = 29.376V

The emf of the battery is 29.376V


B. To find the resistance in each resistor, just apply Ohm's law again. In a parallel circuit, the voltage is the same, but the current that runs through it is different for each resistor. Now just solve for the current of each using the same voltage.

Resistor 1: 65Ω
I= \frac{V}{R}
I= \frac{29.376}{65}
I= 0.45A

The current flowing through resistor 1 with a resistance of 65Ω is 0.45A.

Resistor 2: 25Ω
I= \frac{V}{R}
I= \frac{29.376}{25}
I= 1.18A
The current flowing through resistor 2 with a resistance of 25Ω is 1.18A.

Resistor 3: 170Ω
I= \frac{V}{R}
I= \frac{29.376}{170}
I= 0.17A

The current flowing through resistor 3 with a resistance of 170Ω is 0.17A.

If you add up all their current it confirms the given that the total current running through all of them is 1.8A.
4 0
3 years ago
Other questions:
  • A crowbar makes our work easier by multiplying effort true or false​
    10·1 answer
  • Could anyone help me out ?
    13·2 answers
  • What type of heat transfer is boiling water??
    10·2 answers
  • Choose the correct statement of Kirchhoff's voltage law.
    8·1 answer
  • Are headlands are formed through wave deposition true orfalse
    9·2 answers
  • A child in a boat throws a 4.5kg package out horizontally with a speed of 13 m/s. Calculate the velocity of the boat immediately
    13·1 answer
  • Help help help HELP AAAAA
    14·1 answer
  • A single circular loop of wire of radius 0.45 m carries a constant current of 2.4 A. The loop may be rotated about an axis that
    10·1 answer
  • A marble rolls off a table from a height of 1.5 meters. Approximately how much time was the marble in the air?
    6·1 answer
  • While rowing in a race, John does 132 J of work while pulling the oar 0.800 m.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!