A. The proeutectoid phase is Fe₃c because 0.95 wt/c is greater than the eutectoid composition which is 0.76 wt/c
b. We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is
(0.14) × (3.5kg) = 0.49kg
c. We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
Answer:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Explanation:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Answer: average annual rainfall, average annual temperatures, types of plants and animals native to the area
Explanation: the best way you can identify a biome is by telling which animal or species are native to the certain area
The force result in stretching the spring 10.0 centimeters is 2.5N.
<h3>
What is Hooke's law?</h3>
If a spring is stretched from its equilibrium position, then a force with magnitude proportional to the increase in length from the equilibrium length is pulling each end.
F = kx
where k is the proportionality constant called the spring constant or force constant.
Up to a point, the elongation of a spring is directly proportional to the force applied to it. Once you extend the spring more than 10.0 centimeters, however, it no longer follows that simple linear rule.
Let the spring constant be very low 0.04N/m
The force applied is
F = 10 cm / 0.04
F = 0.1 m / 0.04
F = 2.5 N
Thus, the force result in stretching the spring 10cm is 2.5 N.
Learn more about hooke's law.
brainly.com/question/13348278
#SPJ1