You'd get an extra 40/60 of the energy, or 2/3. Multiply 5/3 by the required energy to get the actual consumption.
Answer:
2.2 s
Explanation:
Hi!
Let's consider the origin of the coordinate system at the ground, and consider that the clam starts with zero velocity, the equation of motion of the clam is given by

We are looking for a time t for which x(t) = 0

Solving for t:

Rounding at the first decimal:
t = 2.2 s
Answer:
A) 140 k
b ) 5.22 *10^3 J
c) 2910 Pa
Explanation:
Volume of Monatomic ideal gas = 1.20 m^3
heat added ( Q ) = 5.22*10^3 J
number of moles (n) = 3
A ) calculate the change in temp of the gas
since the volume of gas is constant no work is said to be done
heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT
make ΔT subject of the equation
ΔT = Q / n.(3/2).R
= (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )
= 140 K
B) Calculate the change in its internal energy
ΔU = Q this is because no work is done
therefore the change in internal energy = 5.22 * 10^3 J
C ) calculate the change in pressure
applying ideal gas equation
P = nRT/V
therefore ; Δ P = ( n*R*ΔT/V )
= ( 3 * 8.3144 * 140 ) / 1.20
= 2910 Pa
<span>The pure form of an element that is typically lustrous, malleable, and conducts heat and electricity is a/an</span> metal
Answer:
1387908 lbm/h
Explanation:
Air flowing into jet engine = 70 lbm/s
ρ = Exhaust gas density = 0.1 lbm/ft³
r = Radius of exit with a circular cross section = 1 ft
v = Exhaust gas velocity = 1450 ft/s
Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel
Q = (70+x) lbm/s
Area of exit with a circular cross section = π×r² = π×1²= π m²
Now from energy balance
Q = ρ×A×v
⇒70+x = 0.1×π×1450
⇒70+x = 455.53
⇒ x = 455.53-70
⇒ x = 385.53 lbm/s
∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h