Answer:
t = 3 seconds
Explanation:
Given that,
Initial speed, u = 30 m/s
Final speed, v = 0
It slides 45 m to rest.it take the box to come to rest
We need to find how long it take the box to come to rest.
Let a be the acceleration and t is time.

Now finding time.

So, the required time is 3 seconds.
Yes, they seem right to me.
Answer: Noise above 70 dB can cause hearing damage
Explanation:
Answer:
410.4J
Explanation:
Step one:
given
mass= 3.35kg
weight= 3.35*9.81= 32.86N
h=12.49m
Required
The net work done
Step two:
the work done is given as
WD= force* distance
WD= 32.86*12.49
WD= 410.4J
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>