A shopping cart that starts from rest, is accelerated for 4 s, moves at constant velocity for 4 s, and is decelerated for 4s until returning to rest, has an average acceleration of 0 m/s².
A shopper is pushing a cart down a grocery store aisle. The movement of the cart is:
- It starts from rest.
- From t = 0 s to t = 4.0 s it is accelerated with a constant force.
- From t = 4 s to t = 8.0 s it receives just enough force to balance the friction on the cart.
- From t = 8 s to t = 12 s it is decelerated until it comes to rest.
All in all, at the initial time (t = 0 s), the velocity is 0 m/s (rest) and at the final time (t = 12 s) the velocity is 0 m/s as well (rest). The average acceleration in that period is:

A shopping cart that starts from rest, is accelerated for 4 s, moves at constant velocity for 4 s, and is decelerated for 4s until returning to rest, has an average acceleration of 0 m/s².
Learn more: brainly.com/question/16274121
Answer:
Both experienced the same magnitude impulse
Explanation:
This is because, the impulse force is internal to the system of both the tennis ball and the bowling ball. It is an action-reaction pair. So, the force exerted on the tennis ball by the bowling ball equals in magnitude to the force exerted by the tennis ball on the bowling ball although, they are in opposite directions. This, both experienced the same magnitude impulse.
The mechanical energy isn't conserved. Some energy is lost to friction.
Option A.
<h3><u>Explanation:</u></h3>
The mechanical energy is defined as the energy of a body which it achieves by virtue of its position and velocity. The mechanical energy are of two types - potential energy and kinetic energy. The potential energy is the energy of the body which it achieves by means of its relative position and is directly proportional to the height of the body from its relative plane. Whereas the kinetic energy of the body is achieved by virtue of its velocity and is directly proportional to the square of velocity of the body.
As the mountaineer is skiing down the slope of a mountain, the potential energy of the person is gradually changing into his kinetic energy. Had it been in an ideal situation, the potential energy lost would have been just equal to the kinetic energy gained by the person. But there's friction which opposes the speed of the body and reduces the velocity. Thus the kinetic energy will be lost to some extent and the energy won't be conserved.
Answer:

Explanation:
The energy of a photon is given by:

where
h is the Planck constant
c is the speed of light
is the wavelength of the photon
In this problem, we have a microwave photon with wavelength

Substituting into the equation, we find its energy:

Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.