The correct answer is D: Watt. This unit was named after James Watt, and
is used to express the equivalent of one joule per second in energy. In
experiments and on the packaging for electrical products such as light-bulbs, the measurement will usually be written in its abbreviated
format: W.
<span />
Answer:
c. 2 MeV.
Explanation:
The computation of the binding energy is shown below
![= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV](https://tex.z-dn.net/?f=%3D%20%5BZm_p%20%2B%20%28A%20-%20Z%29m_n%20-%20N%5Dc%5E2%5C%5C%5C%5C%3D%5B%281%29%20%281.007825u%29%20%2B%20%282%20-%201%20%29%20%28%201.008665%20u%29%20-%202.014102%20u%5Dc%5E2%5C%5C%5C%5C%3D%20%280.002388u%29c%5E2%5C%5C%5C%5C%3D%20%28.002388%29%20%28931.5%20MeV%29%5C%5C%5C%5C%3D2.22%20MeV)
= 2 MeV
As 1 MeV = (1 u) c^2
hence, the binding energy is 2 MeV
Therefore the correct option is c.
We simply applied the above formula so that the correct binding energy could come
And, the same is to be considered
Answer:
2.1km
Explanation:
Ill take it as u are talking about the displacement
Since displacement has negatives and positves
5.9 - 3.8 = 2.1km
Answer:
C
Explanation:
Im not sure but I did somthing simalier
Answer:
satellite B
Explanation:
A .F= G (mM)/r²
B .F= G (2mM)/r² = 2G (Mm)r²
C .F= G (3mM)/(2r)² = ¾G (mM)/r²
D .F= G (4mM)/(2r)² = G (mM)/r²