An object moving in a circular path has centripetal acceleration. <em>(A)</em>
The work done by friction to move the sled is - 1,323 J.
<h3>
What is Coefficient of friction?</h3>
- The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them.
- Typically, it is represented by the Greek letter µ. In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
- The coefficient of friction has no dimensions because both F and N are measured in units of force (such as newtons or pounds). For both static and kinetic friction, the coefficient of friction has a range of values.
- When an object experiences static friction, the frictional force resists any applied force, causing the object to stay at rest until the static frictional force is removed. The frictional force opposes an object's motion in kinetic friction.
Solution:
Given that
Coefficient of friction (µ) = 0.10
Mass (m) = 90kg
distance covered (d) = 30m
We use the formula:
friction work = -µmgdcos∅
friction work = -0.100 × 90 kg × 9.8 m/s² × 30 m × cos 60°
friction work = - 1,323 J
Know more about Coefficient of friction numerical brainly.com/question/19308401
#SPJ4
I can guarantee you that it is not
C.<span>the angle that the incident ray makes with a line drawn perpendicular to the reflecting surface I hope this somewhat helps</span>
Answer:
5
Explanation:
If you straighten out the line, it touches the 5, which makes the length 5
Answer:
there will be collision
Explanation:
= speed of sue = 34 m/s
= speed of van = 5.20 m/s
= speed of sue relative to van =
= 34 - 5.20 = 28.8 m/s
= stopping distance after brakes are applied
= distance between sue and van = 160 m
= final speed of sue = 0 m/s
= acceleration = - 1.80 m/s²
Using the kinematics equation


m
Since
hence there will be collision