I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.
Answer: Option (b) is the correct answer.
Explanation:
According to ohm's law, the relationship between voltage, resistance, and current is that current passing through a conductor is directly proportional to the voltage over resistance.
Mathematically, I = 
From this relationship we can see that when we decrease the voltage, and do not change the resistance, the current will also decrease. As current is directly proportional to voltage and inversely proportional to resistance.
Answer:
Minimum height of metal = 5 inches
Explanation:
Volume of the cylindrical metal = πR²H = 125π
cancelling out π on both sides
R²H = 125
Hence it can be deduced that R² = 25 and H = 5
Hence minimum height of metal = 5 inches
speed of the car = 27 m/s
speed of truck ahead = 10 m/s
relative speed of car with respect to truck

relative deceleration of car

now the distance before they stop with respect to each other is given by



so it will come at the same speed of truck after 20.6 m distance and hence it will not hit the truck as the distance of the truck is 25 m from car
Part b)
Distance traveled by car before it stops is given by



so it will stop after it will cover total 52.1 m distance
Part c)
time taken by the car to stop



now the distance covered by truck in same time

now after the car will stop its distance from the truck is

<em>so the distance between them is 11.5 m</em>