Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
Answer:

Explanation:
From the question we are told that:
Dimension of Wall:

Electric field 
Angle 
Generally the equation for electric Flux is mathematically given by



Using physical means such as electrostatic filters or mechanical filters :)
Answer:
terminal velocity is;
v = 117.54 m/s
v = 423.144 km/hr
Explanation:
Given the data in the question;
we know that, the force on a body due to gravity is;
= mg
where m is mass and g is acceleration due to gravity
Force of drag is;
=
pCAv²
where p is the density of fluid, C is the drag coefficient, A is the area and v is the terminal velocity.
Terminal velocity is reach when the force of gravity is equal to the force of drag.

mg =
pCAv²
we solve for v
v = √( 2mg / pCA )
so we substitute in our values
v = √( [2×(86 kg)×9.8 m/s² ] / [ 1.21 kg/m³ × 0.7 × 0.145 m²] )
v = √( 1685.6 / 0.122015 )
v = √( 13814.6949 )
v = 117.54 m/s
v = ( 117.54 m/s × 3.6 ) = 423.144 km/hr
Therefore terminal velocity is;
v = 117.54 m/s
v = 423.144 km/hr
Chemical weathering because it used examples of it such as acidic rain and oxidation. Plus they use chemical a few times too.