Answer:
a) ΔV = 25.59 V, b) ΔV = 25.59 V, c) v = 7 10⁴ m / s, v/c= 2.33 10⁻⁴ ,
v/c% = 2.33 10⁻²
Explanation:
a) The speed they ask for electrons is much lower than the speed of light, so we don't need relativistic corrections, let's use the concepts of energy
starting point. Where the electrons come out
Em₀ = U = e DV
final point. Where they hit the target
Em_f = K = ½ m v2
energy is conserved
Em₀ = Em_f
e ΔV = ½ m v²
ΔV =
mv²/e (1)
If the speed of light is c and this is 100% then 1% is
v = 1% c = c / 100
v = 3 10⁸/100 = 3 10⁶6 m/ s
let's calculate
ΔV =
ΔV = 25.59 V
b) Ask for the potential difference for protons with the same kinetic energy as electrons
K_p = ½ m v_e²
K_p =
9.1 10⁻³¹ (3 10⁶)²
K_p = 40.95 10⁻¹⁹ J
we substitute in equation 1
ΔV = Kp / M
ΔV = 40.95 10⁻¹⁹ / 1.6 10⁻¹⁹
ΔV = 25.59 V
notice that these protons go much slower than electrons because their mass is greater
c) The speed of the protons is
e ΔV = ½ M v²
v² = 2 e ΔV / M
v² =
v² = 49,035 10⁸
v = 7 10⁴ m / s
Relation
v/c = 
v/c= 2.33 10⁻⁴
Answer:
The answer is 13 however make sure if they ask for a certain measurement like meter answer it by saying 13 meters.
Explanation:
This basically turns into basic algebra if you know the formula for work. The formula for work is W=F*d
Here are the variables that you know 650J=50N*d so you need d.
All you do is divide 650J by 50N and you get a total of 13 (meters since I don't know what they want you to put it in).
I am assuming you know the relation obtained between slit width, distance of screen from slits, distance of interference pattern obtained on the screen from the center and the wavelength of monochromatic light used in Young's Double Slit experiment.
λ =

λ ~ 1.97 ×10⁻⁷m
When both particles, the electron and the proton move at the same speed, they may have differences with their de Broglie wavelength, the particle that would have a longer wavelength would be the proton since the wavelength is in direct proportionality with the mass of the particle.
<span>Cells with similar preferences are arranged closer together in the auditory cortex. </span>That statement presented is True. Auditory cortex is in the temporal lobe. It processes auditory information in human and as well as other invertebrates. The neurons inside the auditory cortex are organized depends on the frequency of the sound.