1. false 2. false 3. true 4. not sure 5. b 6. b or d 7. not sure 8.not sure 9. not sure 10. c
lol sorry if i’m wrong on any i’m just using common sense
The awnser is. 1728000 kilometers
Answer:
(a) f= 622.79 Hz
(b) f= 578.82 Hz
Explanation:
Given Data
Frequency= 600 Hz
Distance=1.0 m
n=120 rpm
Temperature =20 degree
Before solve this problem we need to find The sound generator moves on a circular with tangential velocity
So
Speed of sound is given by
c = √(γ·R·T/M)
............in an ideal gas
where γ heat capacity ratio
R universal gas constant
T absolute temperature
M molar mass
The speed of sound at 20°C is
c = √(1.40 ×8.314472J/molK ×293.15K / 0.0289645kg/mol)
c= 343.24m/s
The sound moves on a circular with tangential velocity
vt = ω·r.................where
ω=2·π·n
vt= 2·π·n·r
vt= 2·π · 120min⁻¹ · 1m
vt= 753.6 m/min
convert m/min to m/sec
vt= 12.56 m/s
Part A
For maximum frequency is observed
v = vt
f = f₀/(1 - vt/c )
f= 600Hz / (1 - (12.56m/s / 343.24m/s) )
f= 622.789 Hz
Part B
For minimum frequency is observed
v = -vt
f = f₀/(1 + vt/c )
f= 600Hz / (1 + (12.56m/s / 343.24m/s) )
f= 578.82 Hz
Answer:
Density is directly proportional to pressure
Explanation:
As pressure increases (with constant temperature), density also increases.
Density is inversely proportional to temperature.
Answer:
If the cosmos emerged from the Big Bang with sufficiently high density, then it contains enough matter to halt its own expansion and the recession of galaxies will stop. Red shifts will turn to blue shifts as the universe begins collapsing inward and stars and planets and galaxies will collide with increasing frequency and violence as space diminishes. The entire universe will shrink towards a super dense, super hot singularity, much like the one from which it originated, the "big crunch".
Gravity of a low density universe will be too weak to half the present expansion. The universe will expand forever, the galaxies continually receding, their radiation steadily weakening with increasing distance.
In time, we will see no galaxies in the sky beyond the Local Group. Eventually, the Local Group will peter out as their fuel supply is consumed. A "cold death" will happen whereby all radiation, matter, and life are eventually destined to freeze. This would take about a trillion years to happen.
The universe can expand forever, in which case we die a cold death in which all activity gradually fades away, or the expansion can stop and the universe will recollapse to a fiery Big Crunch.