Answer:
<h2>21.4368 ≅ 21.44 million households owned at least two cats.</h2>
Step-by-step explanation:
Total number of households were 116 million.
Hence, 100% = 116 million.
33% of the total US households owned at least one cat.
Hence, the number of household having at least one cat is
million.
It is also given that 56% of that 38.28 million households owned at least 2 cats.
Hence, the number of households having 2 cats is
million.
<u>Question 8</u>
a^2 + 7a + 12
= (a+3)(a+4)
When factorising a quadratic, the product of the two factors should equal the constant term (12), and the sum of the two factors should equal the linear term (7). To find the two factors, list out the factors of 12 (1x12, 2x6, 3x4) and identify the pair that adds up to 7 (3+4).
An alternative method if you get stuck during your exam would be to solve it algebraically using the quadratic formula and then write it in the factorised form.
a = (-7 +or- sqrt(7^2 - 4(1)(12)) / 2(1)
= (-7 +or- sqrt(1))/2
= -3 or -4
These factors are the negative of the values that would go in the brackets when written in factorised form, as when a = -3 the factor (a+3) would equal 0. (If it were positive 3 instead, then in the factorised form it would be a-3).
<u>Question 10</u>
-3(x - y)/9 + (4x - 7y)/2 - (x + y)/18
Rewrite each fraction with a common denominator so you can combine the fractions into one.
= -6(x - y)/18 + 9(4x - 7y)/18 - (x + y)/18
= (-6(x - y) + 9(4x - 7y) - (x + y)) /18
Expand the brackets and collect like terms.
= (-6x + 6y + 36x - 63y - x - y)/18
= (29x - 58y)/18
= 29/18 x - 29/9 y
Answer:
X = 2?
Step-by-step explanation:
Have a great day
Hello once again!
When you see a question like this, you need to find the equation of the straight line.
The formular used is y = mx + c
Where
m = slope
c = constant
First find the slope, since it's a straight line, any 2 coordinates can be used.
Now we need to substitude in the slope, and one of the coordinate you used to find the slope, to the formular to find the constant.
In this case i'm using the coordinate
(-2, 16)
y = mx + c
16 = -6(-2) + c
16 = 12 + c
c = 4
∴ The equation of the line is y = -6x + 4
The next step is to simply substitude in the x = 8 to the equation to find y.
y = -6(8) + 4
y = -48 + 4
y = -44
7 yes is a function
8 is not a function