Weathering of the rock and sedimentation are decomposition processes. Through time, the minerals in the rocks soften due to pressure and heat. So, they crumble down and reduce in terms of size. Once they do, they become sand or part of the soil. So, the answer is A.
Liquids stays the same volume but the bonds are spaced out enough that it can take the shape of whatever container it’s in.
Answer:
pH ![= 1.853](https://tex.z-dn.net/?f=%3D%201.853)
Explanation:
For every mole of hydrochloric acid, one mole of hydronium ion is required. Thus, in order to neutralize 0.014 moles of HCL, 0.014 moles of hydronium is required.
![[H_3O^+] = [HCl] = 0.014](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%3D%20%5BHCl%5D%20%3D%200.014)
pH ![= -log [H^+] = -log [H_3O^+]](https://tex.z-dn.net/?f=%3D%20-log%20%5BH%5E%2B%5D%20%3D%20-log%20%5BH_3O%5E%2B%5D)
Substituting the available values in above equation, we can say that the pH of the solution is equal to
![- log (0.014)](https://tex.z-dn.net/?f=-%20log%20%280.014%29)
pH ![= 1.853](https://tex.z-dn.net/?f=%3D%201.853)
pH of a
M HCL solution ![= 1.853](https://tex.z-dn.net/?f=%3D%201.853)
Answer:
D
Explanation: Decreasing the temperature of the system would lower the reaction rate.
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm