<span>it would bond to the phosphate
</span>
Answer:
The potential energy of the more massive one is twice that of the other.
Explanation:
Potential energy is given by
<em>PE</em> = <em>mgh</em>
where <em>m</em> = mass of body, <em>g</em> = acceleration of gravity and <em>h</em> = height or elevation.
For the less massive car, let the mass be
. Then its <em>PE</em> is

For the massive car, let the mass be
. Its <em>PE</em> is

But 

Hence, the potential energy of the more massive one is twice that of the other.
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C