Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
The energy is 3.06 electronvolts, E = 3.06eV
1eV = 1.6 * 10^-19 J
3.06 eV = 3.06* 1.6 * 10^-19 J = 4.896 * 10^-19 J
Answer:
![d=1.84\ mm](https://tex.z-dn.net/?f=d%3D1.84%5C%20mm)
Explanation:
<u>Capacitance</u>
A two parallel-plate capacitor has a capacitance of
![\displaystyle C=\frac{\epsilon_o A}{d}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20C%3D%5Cfrac%7B%5Cepsilon_o%20A%7D%7Bd%7D)
where
![\epsilon_o=8.85\cdot 10^{-12}\ F/m](https://tex.z-dn.net/?f=%5Cepsilon_o%3D8.85%5Ccdot%2010%5E%7B-12%7D%5C%20F%2Fm)
A = area of the plates = ![\pi r^2](https://tex.z-dn.net/?f=%5Cpi%20r%5E2)
d = separation of the plates
![\displaystyle d=\frac{\epsilon_o A}{C}=\frac{\epsilon_o \pi r^2}{C}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%3D%5Cfrac%7B%5Cepsilon_o%20A%7D%7BC%7D%3D%5Cfrac%7B%5Cepsilon_o%20%5Cpi%20r%5E2%7D%7BC%7D)
We need to compute C. We'll use the circuit parameters for that. The reactance of a capacitor is given by
![\displaystyle X_c=\frac{1}{wC}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X_c%3D%5Cfrac%7B1%7D%7BwC%7D)
where w is the angular frequency
![w=2\pi f=2\pi \cdot 36000=226194.67\ rad/s](https://tex.z-dn.net/?f=w%3D2%5Cpi%20f%3D2%5Cpi%20%5Ccdot%2036000%3D226194.67%5C%20rad%2Fs)
Solving for C
![\displaystyle C=\frac{1}{wX_c}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20C%3D%5Cfrac%7B1%7D%7BwX_c%7D)
The reactance can be found knowing the total impedance of the circuit:
![Z^2=R^2+X_c^2](https://tex.z-dn.net/?f=Z%5E2%3DR%5E2%2BX_c%5E2)
Where R is the resistance,
. Solving for Xc
![X_c^2=Z^2-R^2](https://tex.z-dn.net/?f=X_c%5E2%3DZ%5E2-R%5E2)
The magnitude of the impedance is computed as the ratio of the rms voltage and rms current
![\displaystyle Z=\frac{V}{I}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z%3D%5Cfrac%7BV%7D%7BI%7D)
The rms current is the peak current Ip divided by
, thus
![\displaystyle Z=\frac{\sqrt{2}V}{I_p}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z%3D%5Cfrac%7B%5Csqrt%7B2%7DV%7D%7BI_p%7D)
![I_p=0.65\ mA/1000=0.00065\ A](https://tex.z-dn.net/?f=I_p%3D0.65%5C%20mA%2F1000%3D0.00065%5C%20A)
Now collect formulas
![\displaystyle X_c^2=Z^2-R^2=\left(\frac{\sqrt{2}V}{I_p}\right)^2-R^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X_c%5E2%3DZ%5E2-R%5E2%3D%5Cleft%28%5Cfrac%7B%5Csqrt%7B2%7DV%7D%7BI_p%7D%5Cright%29%5E2-R%5E2)
Or, equivalently
![\displaystyle X_c=\sqrt{\frac{2V^2}{I_p^2}-R^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X_c%3D%5Csqrt%7B%5Cfrac%7B2V%5E2%7D%7BI_p%5E2%7D-R%5E2%7D)
![\displaystyle X_c=\sqrt{\frac{2\cdot 18^2}{0.00065^2}-15000^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20X_c%3D%5Csqrt%7B%5Cfrac%7B2%5Ccdot%2018%5E2%7D%7B0.00065%5E2%7D-15000%5E2%7D)
![X_c=36176.34\ \Omega](https://tex.z-dn.net/?f=X_c%3D36176.34%5C%20%5COmega)
The capacitance is now
![\displaystyle C=\frac{1}{226194.67\cdot 36176.34}=1.22\cdot 10^{-10}\ F](https://tex.z-dn.net/?f=%5Cdisplaystyle%20C%3D%5Cfrac%7B1%7D%7B226194.67%5Ccdot%2036176.34%7D%3D1.22%5Ccdot%2010%5E%7B-10%7D%5C%20F)
The radius of the plates is
![r=18\ cm/2=9 \ cm = 0.09 \ m](https://tex.z-dn.net/?f=r%3D18%5C%20cm%2F2%3D9%20%5C%20cm%20%3D%200.09%20%5C%20m)
The separation between the plates is
![\displaystyle d=\frac{8.85\cdot 10^{-12} \cdot \pi\cdot 0.09^2}{1.22\cdot 10^{-10}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%3D%5Cfrac%7B8.85%5Ccdot%2010%5E%7B-12%7D%20%5Ccdot%20%5Cpi%5Ccdot%200.09%5E2%7D%7B1.22%5Ccdot%2010%5E%7B-10%7D%7D)
![d=0.00184\ m](https://tex.z-dn.net/?f=d%3D0.00184%5C%20m)
![\boxed{d=1.84\ mm}](https://tex.z-dn.net/?f=%5Cboxed%7Bd%3D1.84%5C%20mm%7D)