Answer:
Mass of bullet is m=0.01kg
Mass of the block is M=4kg
Coefficient=0.25,distance=20m
So, let the speed of the block just after the bullet embedded in it be V and v be the speed of bullet before striking the block,
By applying conservation of momentum,
mv=(m+M)V
V=
M+m
mv
Explanation:
please mark me as the brainliest answer and please follow me for more answers to your questions..
Our values can be defined like this,



The problem can be solved for part A, through the Work Theorem that says the following,

Where
KE = Kinetic energy,
Given things like that and replacing we have that the work is given by
W = Fd
and kinetic energy by

So,

Clearing F,

Replacing the values


B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.
Answer:
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Explanation:
Since Juan is closer to the center and Kuri is away from the center so we can say that Juan will move smaller distance in one complete revolution
As we know that the distance moved in one revolution is given as

also the time period of revolution for both will remain same as they move with the time period of carousel
Now we can say that the speed is given as

so Juan will have less tangential speed. so correct answer will be
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Answer:
High tides and low tides are caused by the Moon.
Explanation:
The Moon's gravitational pull generates something called the tidal force.