<span>D. Along two converging oceanic plate boundaries</span>
Answer:
Induced current, I = 0.5 A
Explanation:
It is given that,
number of turns, N = 20
Area of wire, 
Initial magnetic field, 
Final magnetic field, 
Time taken, t = 2 s
Resistance of the coil, R = 0.4 ohms
We know that due to change in magnetic field and emf will be induced in the coil. Its formula is given by :

Where





Let I is the induced current in the wire. It can be calculated using Ohm's law as :



I = 0.5 A
So, the magnitude of the induced current in the coil is 0.5 A. Hence, this is the required solution.
Answer:
R/l = 0.25925 Ω / m
Explanation:
Ohm's law says that the potential difference is proportional to the product of the resistance by the current
V = I R
R = V / I
In this case, since we have two lengths, we can have two lengths, we can find the resistance for each
L = 5 m
R = 7.70 / 5.47
R = 1,408 Ω
L = 10 m
R = 7.70 / 3.25
R = 2,369 Ω
We can make a direct proportions rule (rule of three) to find the resistance per unit length
For L = 5 m
R/l = 1,408 / 5
R/l = 0.2816 Ω / m
For L = 10 m
R/l = 2,369/10
R/l = 0.2369 Ω / m
We can see that the value is similar that differs from the second decimal place, in this case the value for the longer re wire is more accurate because it has a lower joule effect.
One way also to find the average value
R/l = (0.2816 + 0.2369) / 2
R/l = 0.25925 Ω / m
Using physical means such as electrostatic filters or mechanical filters :)