The force that the book exerts on the table is a normal force, not a weight force. (The book's weight doesn't act on the table, it acts on the book.) It's equal in magnitude to the weight of the book, again, because of the first law.
Endo I think but look it up jus in case
A I think it was sorry if not
F = kq1q2/r<span>2
Where,
F - Coulomb Force
k - constant value which is equal to </span>8.98 × 10^9<span> newton square metre per square coulomb
q1 and q2 - two electric charges
r - distance.
5.8 * 10^5 = 1.5 * 10^-9 / r^2
</span><span>5.8 * 10^5 r^2 = 1.5*10^-9
</span>r^2 = 0.0000258620
r = 0.0050854694
So the distance is equal to 5.09 x 10^-3