Answer:
12.64968 Hz
Explanation:
v = Velocity of sound in seawater = 1522 m/s
u = Velocity of dolphin = 7.2 m/s
f' = Actual frequency = 2674 Hz
From Doppler effect we get the relation

The frequency that will be received is 2661.35032 Hz
The difference in the frequency will be

C is the correct answer, hope it helps
Answer:
-6 m/s^2
Explanation:
30 - 90 = -60
-60 / 10 = -6
If acceleration was constant, it will be -6 m/s^2
Answer:
(a) 0.177 m
(b) 16.491 s
(c) 25 cycles
Explanation:
(a)
Distance between the maximum and the minimum of the wave = 2A ............ Equation 1
Where A = amplitude of the wave.
Given: A = 0.0885 m,
Distance between the maximum and the minimum of the wave = (2×0.0885) m
Distance between the maximum and the minimum of the wave = 0.177 m.
(b)
T = 1/f ...................... Equation 2.
Where T = period, f = frequency.
Given: f = 4.31 Hz
T = 1/4.31
T = 0.23 s.
If 1 cycle pass through the stationary observer for 0.23 s.
Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.
= 16.491 s.
(c)
If 1.21 m contains 1 cycle,
Then, 30.7 m will contain (30.7×1)/1.21
= 25.37 cycles
Approximately 25 cycles.
A. Radio waves
Have the lowest frequencies