This is the period in a simple harmonic motion which is 2 seconds in this question.
<h3>
What is Period ?</h3>
The period of an oscillatory object can be defined as the total time taken by a vibrating body to make one complete revolution about a reference point.
We are given the below question
2×3.14√(1.0m/(9.8〖ms〗^(2) )= T
This question can as well be expressed as
2π√(L/g) which is equal to period T.
In a nut shell, Period T = 2×3.14√(1.0m/9.8)
T = 6.28√0.102
T = 6.28 × 0.32
T = 2.006 s
Therefore, the period T of the oscillation is 2 seconds approximately.
Learn more about Period here: brainly.com/question/12588483
#SPJ1
Answer:
8563732.58906 Pa
3992793.23326 Pa
5708.00923 J
Explanation:
V = Volume
N = Number of molecules = 
T = Temperature = 300 K
b = 
= Boltzmann constant = 
P = Pressure
We have the equation

The pressure is 8563732.58906 Pa
For isothermal expansion

The pressure is 3992793.23326 Pa
Work done is given by

The work done is 5708.00923 J
Answer:
Fourth option
Explanation:
They're many different types of energy, from chemical and mechanical to heat and solar energy. But the two most basic types of energy are "kinetic and potential energy" or the fourth option. Kinetic energy is the energy an object has when it is in motion, while potential energy is the energy an object has when it's as rest. These two specific types of energies are the most basic and you can even convert them into many different types of energies, like heat or electrical energy.
Hope this helps.
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves