The cost c, is 55 per ticket t, so the equation is c=55t
Answer:
4z4−6z3−2z2−20z+1
Step-by-step explanation:
4z5−14z4+10z3−16z2+41z−2
z−2
=
4z5−14z4+10z3−16z2+41z−2
z−2
=
(z−2)(4z4−6z3−2z2−20z+1)
z−2
=4z4−6z3−2z2−20z+1
(theres no more like terms so u cant)
Since a calculator is involved in finding the answer, it makes sense to me to use a calculator capable of adding vectors.
The airplane's ground speed is 158 mph, and its heading is 205.3°.
_____
A diagram can be helpful. You have enough information to determine two sides of a triangle and the angle between them. This makes using the Law of Cosines feasible for determining the resultant (r) of adding the two vectors.
.. r^2 = 165^2 +15^2 -2*165*15*cos(60°) = 24975
.. r = √24975 ≈ 158.03
Then the angle β between the plane's heading and its actual direction can be found from the Law of Sines
.. β = arcsin(15/158.03*sin(60°)) = 4.7°
Thus the actual direction of the airplane is 210° -4.7° = 205.3°.
The ground speed and course of the plane are 158 mph @ 205.3°.
Answer:
23,064
Step-by-step explanation:
multiply two numbers
Answer:

Step-by-step explanation: