Crystalline solids must have a specific, orderly arrangement of atoms to be considered so.
Answer: In this lab we wanted to know how motion can be described. So the hypothesis is if the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration. My prediction is that cars travel faster on higher tracts. So the heighten the track was intentionally manipulated. So it is the independent variable the speed of the car is the dependent variable. The speed at the first quarter checkpoint is 1.09 m/s. The speed at the second quarter checkpoint is 1.95 m/s. The speed at the third quarter checkpoint is 2.373.36 m/s. The speed at the finish line is 2.803.00 m/s. The average speed increases as the height increases.
The cars on the higher track travel farther than the cars on the lower track, in the same time.
This means that the cars on the higher track have a greater average speed than those on the lower track. This is demonstrated by the
slope of the higher track line being greater than the slope of the lower track line.
Explanation: put it in notes then send it to files to compress it to submit it.
Density = Mass divided by Volume
Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s
Answer:
53/14
Explanation:
average acceleration = (Vfinal -Vintial)/ time taken