1 mole of h3bo3...........6.023*10²³ each h and B and 0 so we will have 3hydrogen+ 1 B+3 oxygen = 7*6.023*10²³ atoms
1 mole .......7*6.023*10²³atoms
4 moles ........x atoms
x=4*7*6.023*10²³.

The element having valency of 1 is ~
Option B is correct
K = Kp /Kr
The given equation indicating, the product containing 6 moles of proton whereas the reactant contains 2 mole of bismuth and 3 mole of hydrogen sulphide.
Hence, in reaction B there are 2 mole of bismuth and 3 mole of hydrogen sulphide reacting to produce 6 moles of proton. whereas the concentration of Bi2S3 is not considered as it is present in solid phase.
Cant see it well please find better view
Answer:

Explanation:
Hello,
In this case, the combustion of methane is shown below:

And has a heat of combustion of −890.8 kJ/mol, for which the burnt moles are:

Whereas is consider the total released heat to the surroundings (negative as it is exiting heat) and the aforementioned heat of combustion. Then, by using the ideal gas equation, we are able to compute the volume at 25 °C (298K) and 745 torr (0.98 atm) that must be measured:

Best regards.