This dilution problem uses the equation
M
a
V
a
=
M
b
V
b
M
a
= 6.77M - the initial molarity (concentration)
V
a
= 15.00 mL - the initial volume
M
b
= 1.50 M - the desired molarity (concentration)
V
b
= (15.00 + x mL) - the volume of the desired solution
(6.77 M) (15.00 mL) = (1.50 M)(15.00 mL + x )
101.55 M mL= 22.5 M mL + 1.50x M
101.55 M mL - 22.5 M mL = 1.50x M
79.05 M mL = 1.50 M
79.05 M mL / 1.50 M = x
52.7 mL = x
59.7 mL needs to be added to the original 15.00 mL solution in order to dilute it from 6.77 M to 1.50 M.
I hope this was helpful.
The correct matches are:
1. Exosphere - Temperatures reach as high as 2000 C yet it feels very cold
This is the top layer of the atmosphere. The atoms are so dispersed that despite it having very high temperature it doesn't feel like it at all.
2. Thermosphere - Particles that have enough energy can escape into space
The thermosphere is the fourth highest layer of the atmosphere. The atoms in this layer are relatively distant from one another, so the particles that have enough energy manage to escape easily into the exosphere and then the space.
3. Mesosphere - It is the coldest region of the atmosphere
The mesosphere is the third highest layer. In this layer the temperatures constantly drop, and they go down to -85 degrees, making it the coldest layer by far.
4. Stratosphere - Ninety percent ozone is in this layer
The startosphere has a separte zone in it which is dominated by only one gas, the ozone. It is called the ozone layer, the one that protects the Earth from too intense UV radiation, and in fact over 90% of this gas is locate here.
5. Troposphere - It is warm due to the heat from Earth's surface
The troposphere is the densest and lowest of the layers. It is the one that also has Greenhouse gases which manage to trap the heat that is radiated from the surface of the Earth, thus keeping this layer relatively warm.
Answer:
Explanation:
If one mole of carbon monoxide has a mass of 28.01 g and one mole of carbon dioxide has a mass of 44.01 g , it follows that the reaction produces 44.01 g of carbon dioxide for every 28.01 g of carbon monoxide.
Answer:
4,270 Joules
Explanation:
The heat of fusion of water is 334 j/g. So, the equation would be (12.8 g)(334 j/g) which comes to 4,270 joules.
Written out that's just twelve point eight times three hundred and thirty four.