You must observe the object twice.
-- Look at it the first time, and make a mark where it is.
-- After some time has passed, look at the object again, and
make another mark at the place where it is.
-- At your convenience, take out your ruler, and measure the
distance between the two marks.
What you'll have is the object's "displacement" during that period
of time ... the distance between the start-point and end-point.
Technically, you won't know the actual distance it has traveled
during that time, because you don't know the route it took.
Answer:
When you blow into a tuba the air vibrates very slowly.
Explanation:
Tuba is a buzz instrument ie sound is produced in it with the help of lip vibration . It is the lowest pitched musical instrument in the brass family .
Due to absence of resonance in it , it produces music of lowest pitch , So when one blows into it the air column of the instrument vibrates very slowly producing low pitched sound.
The net force acting on the crate is determined as 176 N to the left.
<h3>Net force acting on the crate</h3>
The net force acting on the crate is calculated as follows;
∑F = F1 + F2 + F3 + F4
F(net) = -440y + 176x + 440y - 352x
F(net) = -176 x
The resultant force is pointing in negative x direction.
Thus, the net force acting on the crate is determined as 176 N to the left.
Learn more about net force here: brainly.com/question/14361879
#SPJ1
The value of g at sea level is 9.81 ms^-2.
The boy's mass is constant wherever he is in the universe but his weight will depend on the strength gravity where he is.
By proportion its value on the mountain peak is (360 /400) * 9.81
= 0.9 * 9.81 = 8.83 ms^-2 to nearest hundredth, (answer).
Answer:
3.0 x 10¹ Nm
Explanation:
Torque = F x r
Where F is force applied and r is perpendicular distance from pivot point . r
is also called lever arm
Here F = 15 N and r = 2.0 m
Torque
= 15 N X 2.0 m
= 3.0 10¹ Nm.