1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
7

A light ray passes from air through a glass plate with refractive index 1.60 into water. The angle of the refracted ray in the w

ater is 42.0°. Determine the angle of the incident ray at the air-glass interface?
Physics
2 answers:
Scorpion4ik [409]3 years ago
7 0

Answer:

62.8 degree

Explanation:

Let the incident ray incident at an angle \theta_1 at air glass surface.

\theta_3=42^{\circ}=Angle of refraction when ray travel from glass to water

\theta_2=Angle of refraction when the ray travel from air to glass

Refractive index of glass,n_2=1.6

We know that

Refractive index of water=n_3=1.33

Snell's law

n_1sin\theta_1=n_2sin\theta_2

Where \theta_1=Angle of incidence

\theta_2=Angle of refraction

n_1=Refractive index of medium 1

n_2=Refractive index of medium 2

When the ray travel from glass to water

n_2sin\theta_2=n_3sin\theta_3

Where n_2=Refractive index of medium 1(Glass)

n_3=Refractive index of medium 2 (Water)

\theta_2=Angle of incidence

\theta_3=Angle of refraction

Substitute the values

1.6sin\theta_2=1.33sin42

sin\theta_2=\frac{1.33sin42}{1.6}

sin\theta_2=0.556

\theta_2=sin^{-1}(0.556)=33.8^{\circ}

Angle of refraction when ray travel from air to glass= Angle of incidence of when ray travel from glass to water

Angle of refraction when the ray travel from air to glass=33.8 degree

Refractive index of air=n_1=1

Again apply Snell's law

n_1sin\thet_1=n_2sin\theta_2

1\times sin\theta_1=1.6sin(33.8)

sin\theta_1=1.6\times 0.556=0.8896

\theta_1=sin^{-1}(0.8896)=62.8^{\circ}

Hence, the angle of the incident ray at the air-glass interface=62.8 degree

german3 years ago
6 0

Answer:

The angle of the incident ray at the air-glass interface is 62.86°

Explanation:

Given that,

Refractive index of glass =1.60

Angle = 42°

We need to calculate the angle of the incident ray at glass-water interface

Using Snell's law

n_{2}\sin\theta_{2}=n_{3}\sin\theta_{3}

Where, n_{2} = refractive index of glass

n_{3} = refractive index of water

\theta_{3} = angle of refraction

Put the value into the formula

1.6\sin\theta_{2}=1.33\sin42

\sin\theta_{2}=\dfrac{1.33\sin42}{1.6}

\theta_{2}=\sin^{-1}(\dfrac{1.33\sin42}{1.6})

\theta_{2}=33.8^{\circ}

We need to calculate the angle of the incident ray at the air-glass interface

Using Snell's law

n_{1}\sin\theta_{1}=n_{2}\sin\theta_{2}

Where, n_{1} = refractive index of air

n_{2} = refractive index of glass

\theta_{1} = angle of incident

Put the value into the formula

1\sin\theta_{1}=1.6\sin33.8

\theta=\sin^{-1}(1.6\sin33.8)

\theta=62.86^{\circ}

Hence, The angle of the incident ray at the air-glass interface is 62.86°

You might be interested in
Benny has 20 jellybeans and wants to share with his friends how many will each friend get? there are 5 friends.
trasher [3.6K]

Answer each friend will get 3.33333 repeating if he is included. if only his friends are getting them then each one gets 4

Explanation:

devide 20/6 and 20/5 respectively.

7 0
3 years ago
Im bad at work problems can any one help with this problem ?
lyudmila [28]
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.

8    7,680    1,010
7    9,940    1,330
12  14,640  1,790
12  13,920  2,050
4 0
4 years ago
A very humble bumble bee is flying horizontally due North at a constant speed of 3.11 m/s. At the current location of the bumble
Reil [10]

To solve this problem we will apply the concepts of the Magnetic Force. This expression will be expressed in both the vector and the scalar ways. Through this second we can directly use the presented values and replace them to obtain the value of the magnitude. Mathematically this can be described as,

\vec{F_B} = q(\vec{V}\times \vec{B})

F_B = q|v||B| sin\theta

Here,

q = Charge

v = Velocity

B = Magnetic field

\theta = \text{Angle between } \vec{B} \text{ and } \vec{V}

Our values are given as,

\theta = 35.7\°

q = 22.5*10^{-9}C

B = 1.05*10^{-5}T

v = 3.11m/s

Replacing,

F_B = (22.5*10^{-9}C)(3.11 \times 1.05*10^{-5}) sin(35.1\°)

F_B = 4.224*10^{-13}N

Therefore the size of the magnetic force acting on the bumble bee is 4.22*10^{-13}N

3 0
3 years ago
a football field is 150 meters long. a football player take 30 seconds to run the entire length of the field. what was his speed
andreyandreev [35.5K]

his speed is : FAST AS ALL GET OUT



8 0
3 years ago
Read 2 more answers
In what do electromagnetic waves cause disturbances when they transfer
IrinaVladis [17]
Both electric and magnetic fields
5 0
3 years ago
Read 2 more answers
Other questions:
  • calculate the density of a neutron star with a radius 1.05 x10^4 m, assuming the mass is distributed uniformly. Treat the neutro
    9·1 answer
  • What are the 2 ways to describe matter
    6·2 answers
  • Which mass is undergoing to the greatest amount of acceleration ??
    8·1 answer
  • A cable that weighs 8 lb/ft is used to lift 900 lb of coal up a mine shaft 650 ft deep. Find the work done. Show how to approxim
    9·1 answer
  • 4) (5 points) Given are the magnitudes and orientations (with respect to x-axis) of 3
    13·1 answer
  • I really need help on this please help me
    5·1 answer
  • Why is cloning done before an investigation begins??
    7·1 answer
  • How does an air mattress protect a stunt person landing on the ground after a stunt?
    6·1 answer
  • Which of the following is true about mutations in somatic cells?
    14·1 answer
  • Isabella is learning the parts of the cell and knows they require a structure to regulate the transfer of materials in and out.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!