1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
7

A light ray passes from air through a glass plate with refractive index 1.60 into water. The angle of the refracted ray in the w

ater is 42.0°. Determine the angle of the incident ray at the air-glass interface?
Physics
2 answers:
Scorpion4ik [409]3 years ago
7 0

Answer:

62.8 degree

Explanation:

Let the incident ray incident at an angle \theta_1 at air glass surface.

\theta_3=42^{\circ}=Angle of refraction when ray travel from glass to water

\theta_2=Angle of refraction when the ray travel from air to glass

Refractive index of glass,n_2=1.6

We know that

Refractive index of water=n_3=1.33

Snell's law

n_1sin\theta_1=n_2sin\theta_2

Where \theta_1=Angle of incidence

\theta_2=Angle of refraction

n_1=Refractive index of medium 1

n_2=Refractive index of medium 2

When the ray travel from glass to water

n_2sin\theta_2=n_3sin\theta_3

Where n_2=Refractive index of medium 1(Glass)

n_3=Refractive index of medium 2 (Water)

\theta_2=Angle of incidence

\theta_3=Angle of refraction

Substitute the values

1.6sin\theta_2=1.33sin42

sin\theta_2=\frac{1.33sin42}{1.6}

sin\theta_2=0.556

\theta_2=sin^{-1}(0.556)=33.8^{\circ}

Angle of refraction when ray travel from air to glass= Angle of incidence of when ray travel from glass to water

Angle of refraction when the ray travel from air to glass=33.8 degree

Refractive index of air=n_1=1

Again apply Snell's law

n_1sin\thet_1=n_2sin\theta_2

1\times sin\theta_1=1.6sin(33.8)

sin\theta_1=1.6\times 0.556=0.8896

\theta_1=sin^{-1}(0.8896)=62.8^{\circ}

Hence, the angle of the incident ray at the air-glass interface=62.8 degree

german3 years ago
6 0

Answer:

The angle of the incident ray at the air-glass interface is 62.86°

Explanation:

Given that,

Refractive index of glass =1.60

Angle = 42°

We need to calculate the angle of the incident ray at glass-water interface

Using Snell's law

n_{2}\sin\theta_{2}=n_{3}\sin\theta_{3}

Where, n_{2} = refractive index of glass

n_{3} = refractive index of water

\theta_{3} = angle of refraction

Put the value into the formula

1.6\sin\theta_{2}=1.33\sin42

\sin\theta_{2}=\dfrac{1.33\sin42}{1.6}

\theta_{2}=\sin^{-1}(\dfrac{1.33\sin42}{1.6})

\theta_{2}=33.8^{\circ}

We need to calculate the angle of the incident ray at the air-glass interface

Using Snell's law

n_{1}\sin\theta_{1}=n_{2}\sin\theta_{2}

Where, n_{1} = refractive index of air

n_{2} = refractive index of glass

\theta_{1} = angle of incident

Put the value into the formula

1\sin\theta_{1}=1.6\sin33.8

\theta=\sin^{-1}(1.6\sin33.8)

\theta=62.86^{\circ}

Hence, The angle of the incident ray at the air-glass interface is 62.86°

You might be interested in
A student is given a red and a blue liquid. The two samples of liquids are
topjm [15]
<h3>Option D) The red liquid has a smaller specific heat</h3>

When a substance has smaller specific heat it needs less heat to shows changes in it hence making the option D correct.

3 0
2 years ago
Read 2 more answers
How would this affect the electrostatic force between them?
Alja [10]

The answer is increase

Explanation:

6 0
2 years ago
A mass weight of 120N is hung from two strings. what is the tension?
kramer
The weight should be shared between the two string equally. Therefore, tension in each string, T is;

T = 120 N/2 = 60 N
7 0
3 years ago
Read 2 more answers
Which of the following intermolecular forces explains why iodine (I2) is a solid at room temperature?
egoroff_w [7]
"Dispersion forces" is the one intermolecular force among the following choices given in the question that <span>explains why iodine (I2) is a solid at room temperature. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>
3 0
3 years ago
It took David 2 seconds to lift a 5 Newton bag of toys from the floor to the top of the top shelf, which is 3 meters tall. How m
just olya [345]
So power is equal to work over time and work is force times distance, you do 5 times 3 and get 15 dividing by 2 gives us 7.5 W answer c
7 0
2 years ago
Other questions:
  • A girl pulls a sled with a force of 15 N over a distance of 3 m. What is the kinetic energy of the sled after she pulls it? Assu
    15·2 answers
  • A term used to describe water that is safe to drink?
    15·1 answer
  • A coyote can locate a sound source with good accuracy by comparing the arrival times of a sound wave at its two ears. Suppose a
    11·1 answer
  • What are the units of the following properties? Enter your answer as a sequence of five letters separated by commas, e.g., A,F,G
    7·1 answer
  • What would we need to know to calculate both work and power?
    15·2 answers
  • In a nuclear reactor 1 g of mass is converted into energy. How much energy in Joules is produced?
    8·1 answer
  • Unlike acceleration and velocity, speed is NOT a quantity that accounts for..
    14·2 answers
  • An electron and a proton are both released from rest, midway between the plates of a charged parallel-plate capacitor. The only
    12·1 answer
  • Part C<br> How many combined bits of storage are there on the two tablets?
    10·2 answers
  • How to use heliocentric in your own sentence?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!