Answer:
Explanation:
Suppose initially the plane was horizontal and light was reflected back at some angle θ from the normal .
Now the reflecting surface is twisted so that is becomes inclined at angle alpha .
The reflected light will be deviated from its original direction by angle
2 x alpha .
Similarly when the reflecting surface is further twisted so that it becomes inclined at angle beta then again the reflected beam will deviated by angle
2 x beta
Hence angle between these two reflected beam
= 2 beta - 2 alpha
= 2 ( β - α )
So, angular separation between the rays reflected from the two surfaces
= 2 ( β - α ) .
Answer:
0.30581
0.24464
Explanation:
= Coefficient of static friction
= Coefficient of kinetic friction
= 75 N
= 60 N
Normal force

Frictional force

The coefficient of static friction is 0.30581
Kinetic force

The coefficient of kinetic friction is 0.24464
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that force on the passenger while moving in circle is given as

now variation in force is given as

here speed is constant
Part b)
Now if the variation in force is required such that r is constant then we will have

so we have

Part c)
As we know that time period of the circular motion is given as

so here if radius is constant then variation in time period is given as

Maybe push or pull an object with a large amount of mass? you are force a (pushing through object) aka making contact. i hope i helped not good with physics :)