Answer:
a)1.51*10^-22joules b) 1.89*10^-7m
Explanation:
Work done to stop the proton = the kinetic energy of the proton = 1/2 mv^2 = 1/2* 1.67*10^-27* 425*425 = 1.51* 10 ^ -22 joules
b) net force acting to stop the proton = 8.01*10^-16
Work done needed to stop the proton = net force acting opposite the motion * distance
Distance covered = need work done/ net force
Distance = 1.51*10^-22/8.01*10^-16= 1.89*10^-7m
Answer: The period of the pendulum will increase. Because of less gravity
Explanation:
Since the force of gravity is less on the Moon, the pendulum would swing slower at the same length and angle and its frequency would be less. Hence more time period will be experienced by the pendulum. On the moon, the acceleration due to gravity g is less when compared to that of the earth.
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>
Answer:

Explanation:
a = Orbital radius = 
T = Orbital period = 23.21 hours
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
From Kepler's third law we get

From the given data the mass of Saturn is 
Answer:
10m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 100m/s
Time taken = 10s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time.
A =
v = final velocity
u = initial velocity
t = time taken
So, insert the parameters and solve;
A =
= 10m/s²