It would last as long as the applied force continued, or until the accelerating object hit something.
Answer:
Speed of cart's might be less than the high speed after 5 seconds.
Explanation:
Given that,
A fan cart with the fan set to high rolled across the floor.
Let the speed of fan cart with set to high is
per second.
The fan supplies a force to the cart. If a lower fan speed were used, less force would be applied. This would cause a slower change in the cart's speed. So, the cart would be rolling more slowly than
per second after 5 seconds. The speed of cart's might be less than
per second.
Force is needed
A. for a moving object to keep moving at the same speed and direction
B. for a moving object to change its speed
C. for a motionless object to remain still
D. to prevent a moving object from turning
Hence,
Speed of cart's might be less than the high speed after 5 seconds.
Energy can not be created or destroyed but can change from one form to another.
example: as a roller coaster cart loses height the more speed it gains, the potential energy is transferred into kenetic energy
Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291