Answer:
6 m/s
Explanation:
mass of moving car m1=5000 kg
initial velocity of moving car vi1=?
mass of car at rest = m2=10000 kg
initial velocity of car at rest = vi2=0
final velcoities of both cars after collision = vf1=vf2= 2m/s
using conservation of momentum rule
m1vi1+m2vi2=m1vf1+m2vf2
putting values
==> 5000 × vi1 + 1000 × 0 = 5000 × 2 + 10000 × 2
==> 5000 ×vi1 = 2 × 15000
==> vi1 = 2 × 15000 ÷ 5000
==> vi1= 2×3=6 m/s
Answer:
a. 86.80 m
b. i. The mass of the bob
ii. The length of the pendulum
Explanation:
a. Determine the height of the smokestack.
Using T = 2π√(L/g) where T = period of pendulum = 18.7 s, L = length of pendulum = height of smokestack and g = acceleration due to gravity = 9.8 m/s².
So, making L subject of the formula, we have
T = 2π√(L/g)
T/2π = √(L/g)
squaring both sides, we have
(T/2π)² = L/g
L = (T/2π)²g
Substituting the values of the variables into the equation, we have
L = (T/2π)²g
L = (18.7 s/2π)²(9.8 m/s²)
L = (2.976 s)²(9.8 m/s²)
L = 8.857 s² × 9.8 m/s²
L = 86.796 m
L ≅ 86.80 m
b. What factors influence the period of a simple pendulum
The factors that influence the period of a simple pendulum are
i. The mass of the bob
ii. The length of the pendulum
Answer:
I don't know but you got this!!