NO musical instrument produces a 'pure' tone with only a
single frequency in it.
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.
Answer:

Explanation:
Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

Answer:
I = 21.13 mA ≈ 21 mA
Explanation:
If
I₁ = 5 mA
L₁ = L₂ = L
V₁ = V₂ = V
ρ₁ = 1.68*10⁻⁸ Ohm-m
ρ₂ = 1.59*10⁻⁸ Ohm-m
D₁ = D
D₂ = 2D
S₁ = 0.25*π*D²
S₂ = 0.25*π*(2*D)² = π*D²
If we apply the equation
R = ρ*L / S
where (using Ohm's Law):
R = V / I
we have
V / I = ρ*L / S
If V and L are the same
V / L = ρ*I / S
then
(V / L)₁ = (V / L)₂ ⇒ ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂
If
S₁ = 0.25*π*D² and
S₂ = 0.25*π*(2*D)² = π*D²
we have
ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)
⇒ I₂ = 4*ρ₁*I₁ / ρ₂
⇒ I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m
⇒ I₂ = 21.13 mA
I believe flowing water changes the land because eventually frozen water has to melt to flowing water, right?
Answer:
correct answer is 1 and 3
Explanation:
In direct measurement with an instrument, the precision or absolute error of the instrument is given by its appreciation, in this case we see that the measurements have two decimal places, so the appreciation of the instrument must be 0.01 cm
Based on this appreciation, the valid measurements are 5.52 and 5.5.
the other two measurements have errors much higher than the assessment of the instrument, for which there must have been some errors in the measurement.
The correct answer is 1 and 3