Answer:
Acceleration, 
Explanation:
Given that,
Height from a ball falls the ground, h = 17.3 m
It is in contact with the ground for 24.0 ms before stopping.
We need to find the average acceleration the ball during the time it is in contact with the ground.
Firstly, find the velocity when it reached the ground. So,

u = initial velocity=0 m/s
a = acceleration=g

It is in negative direction, u = -18.41 m/s
Let a is average acceleration of the ball. Consider, v = and u = -18.41 m/s.

So, the average acceleration of the ball during the time it is in contact is
.
As per angular momentum conservation we can say

here we know that

we know that




now from above equation



so speed is 4.4 m/s
The momentum change =mass*velocity change. But sincevelocity change is not known another strategy must be used to find the momentum change. The strategy involves first finding the impulse (F*t = 1.0 N*s). Since impulse = momentum change, the answer is 1.0 N*s.
The heat transferred by the steam to the skin is given by

where
m is the mass of the steam

is the latent heat of vaporization.
In our problem, the mass of the steam is (converting into kg)

while the latent heat of vaporization of the steam is

Substituting into the previous formula, we find the heat transferred to the skin: