When radioactive decay occurs, the original nucleus splits into daughter nuclei and the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Unstable nuclei often undergo radioactive decay. In a radioactive decay, the unstable nucleus is broken up into other nuclei. Usually, the nuclei formed during radioactive decay are smaller in mass compared to the original nucleus.
Also, the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Answer: <em>B) Demonstrate the importance of worker-employer cooperation.</em>
Explanation: Slow down or strike is a demenstration to the employer just how important the workers are to the corp and work place. Nothing can function or run properly without them.
<h2><em>If this is the best answer please mark brainilest. Hope this helps, have a great day!</em></h2>
Answer:
atoms are neutral or they have equal number of proton and electron but ions can be cation(positively charged) or anion(negatively charged) based on the number of electron the atm lose and gain respectively
Answer:
1.195 M.
Explanation:
- We can calculate the concentration of the stock solution using the relation:
<em>M = (10Pd)/(molar mass).</em>
Where, M is the molarity of H₂SO₄.
P is the percent of H₂SO₄ (P = 40%).
d is the density of H₂SO₄ (d = 1.17 g/mL).
molar mass of H₂SO₄ = 98 g/mol.
∴ M of stock H₂SO₄ = (10Pd)/(molar mass) = (10)(40%)(1.17 g/mL) / (98 g/mol) = 4.78 M.
- We have the role that the no. of millimoles of a solution before dilution is equal to the no. of millimoles after dilution.
<em>∴ (MV) before dilution = (MV) after dilution</em>
M before dilution = 4.78 M, V before dilution = 250 mL.
M after dilution = ??? M, V after dilution = 1.0 L = 1000 mL.
∴ M after dilution = (MV) before dilution/(V after dilution) = (4.78 M)(250 mL)/(1000 mL) = 1.195 M.