Answer:
-0.1767°C (Option A)
Explanation:
Let's apply the colligative property of freezing point depression.
ΔT = Kf . m. i
i = Van't Hoff factot (number of ions dissolved). Glucose is non electrolytic so i = 1
m = molality (mol of solute / 1kg of solvent)
We have this data → 0.095 m
Kf is the freezing-point-depression constantm 1.86 °C/m, for water
ΔT = T° frezzing pure solvent - T° freezing solution
(0° - T° freezing solution) = 1.86 °C/m . 0.095 m . 1
T° freezing solution = - 1.86 °C/m . 0.095 m . 1 → -0.1767°C
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide